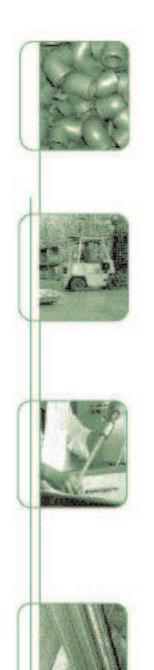
IPS FUSION TECHNICAL DOSSIER

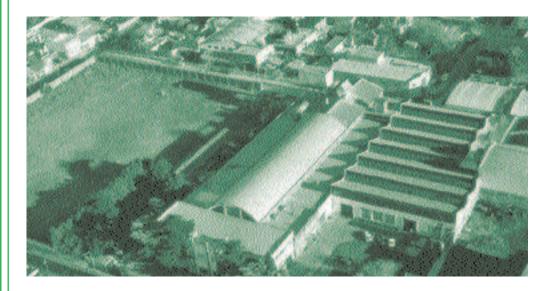
Summary


	Page n*.
1. Introduction	5
2. Regulations, approvals and laboratory trials	9
2.1 Quality, normalized processes	10
2.2 Technology, design and sizing	11
2.3 National and International approvals	11
2.4 Awards	12
3. IPS Fusion System	13
3.1 Attiributes and characteristics	14
3.2 System's useful life	15
3.3 Random copolymer polypropylene or Type 3 - Qualitie	PS 16
3.4 Definitions for the regulatory process	17
3.5 Table of temperatures and pressures	
throught time	18
3.6 Chemical resistances– Tables	20
4. Special Developments	33
4.1 Piping	34
4.2 Fitting	36
4.3 Accessories	36
5. Installation	39
5.1 IPS Fusion Process	40
5.2 Fusion- Table	42
5.3 Late fusion	42
5.4 Concealed piping	42
5.5 Exposed piping	43
6. Calculation	45
6.1 Dilation of IPS Fusion piping	46
6.2 Advisable speeds accorting to pressure	47
6.3 Load loss and diameter test for the IPS Fusion System	m 47
7. IPS recommendations	51
8. IPS Fusion System components	55

IPS FUSION Tecnology

I**PS**

Introduction



1. IPS: Quality piping for the world.

With this edition, IPS reflects its constant interest in generating exclusive services for its commercial and professional customers and users.

In the following pages you will find a comprehensive work and reference tool. These contents have been reviewed and updated from the prior version so that, as a construction professional, on your daily work you can count with the backing of a company with over 50 years of experience in thermoplastic piping installation.

IPS, an Argentinian company that knows what it does.

Regulations, Approvals and Laboratory Tests

 \oplus

2. Regulations, Approvals and Laboratory Tests

2.1 Quality, normalized processes, continuous improvement.

IPS's Quality Management System has been ISO 9001: 2000 certified by the IRAM-IQNet including the design, manufacturing, sales and technical assistance for all the company's products intended for fluid conduction.

It certifies that IPS has an organizational structure based on the concept of prevention, it acts on each one of the mentioned stages with the primary objective of meeting its client's needs.

By the scope of the certification, IPS is periodicaly audited and its Quality Management system is efficient. This proves that IPS:

- Takes into account client's suggestions in order to improve the standards of its products and services.
- Performs inner controls through internal audits to improve processes from their origin.
- Has a formal method for the follow up of continous improvement actions (preventive and corrective actions).
- Sets quality improvement goals and specific measures to achieve them.
- Trains its personel to keep it up to date.
- Selects suppliers that are certified and have an accurrate capacity and performance according to the corresponding specifications.

2.2 Technology, design and sizing

IPS Fusion System's products (Pipes and Fittings) are manufactured according to the following sizing and international tests:

Technical Standards	IRAM	DIN	ISO	EN ISO
IPS FUSION Fittings	13,472-1	16,962		12162
Charles Same	13,472-2	and an and a second		CONSERVICE OF STREET
IPS FUSION Pipes	13,470	8077	161-1	12162
	13,471	8078	STAN A	

ISO International Organization for Standarization

DIN Deutsches Institut für Normung, Alemania

IRAM Argentine Institute for Material Rationalization

IPS – IRAM Member Number. 2862

IPS actively participates of IRAM. As a highlight of this involvement, it has promoted the approval of different material manufacturing norms for fluid conduction in the Republic of Argentina. For the development of these norms, the DIN standards in Germany have always been taken into account.

2.3 National and International Approvals

IRAM SEAL of approval

As of 1999, IPS has been authorized to use the IRAM SEAL on IPS Fusion's Multilayer pipes, nominal pressure 20 kgf/cm2, in 20, 25 and 32 mm diameters.

Approvals for the conduction of liquids for human consumption

Bromatological aptitude:

The raw materials used to manufacture IPS's conduction systems are bromatologically suitable for contact with drinking water and foods, complying to the specifications established by:

- European Directive UE/90/128
- BGA Bundesgesundheitsamt Germany
- FDA Food and Drugs Administration CFR 177.1520 USA
- National Food Code, Resolution Number 1543 Argentina

IPS Fusion System international approvals

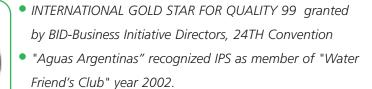
Uruguay: LATU Uruguay's Technological Laboratory

Description: Bromatological aptitude according to UNIT 217-70 norm Tests according to UNIT 879-91 norms Result: Satisfactory Date: April 22, 1998 Product: **IPS Fusion** piping

Uruguay: LATU Uruguay's Technological Laboratory

Description: Dimensions, test of resistance to internal pressure, longitudinal variation, impact resistence, according to UNIT 799-90 norms. Result: Satisfactory Date: April 4, 1997 Product: IPS Fusion piping

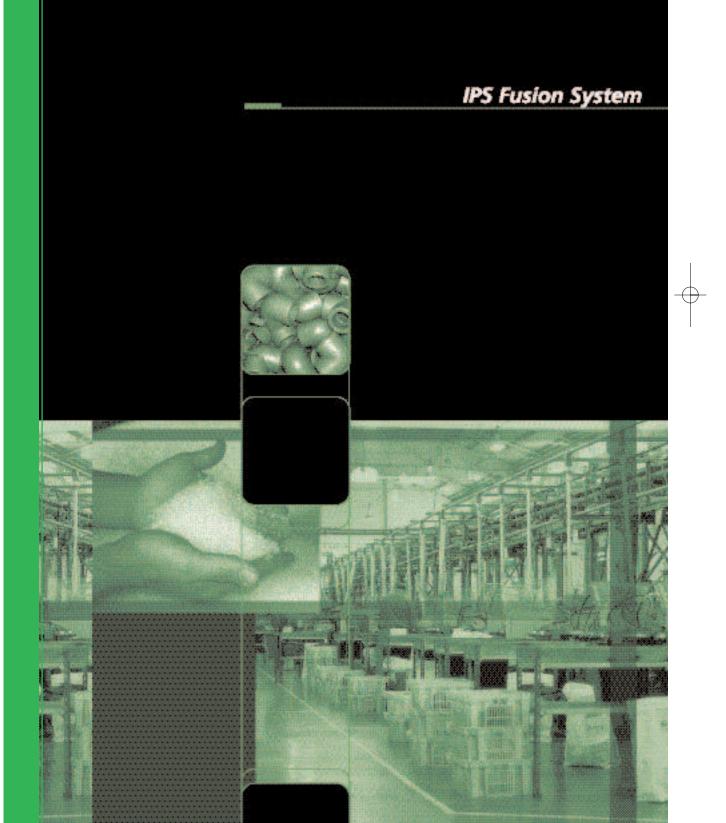
Uruguay: Municipal Intendency of Montevideo


Urban Conditioning Department Description: Approval in urban home installations, resolution record Nr. 161/98 Result: Approved Date: May 13, 1998 Product: IPS Fusion System

Russian Federation: Gosstyart Rusia

Result: Approved Date: October, 2003 Product: IPS Fusion System

2.4 Awards



Special awards received in "Exposanitarios"

Company image in the years 1998 and 1999, in the following categories:

- Plastic pipe screw-fitting.
- Interfusion water conduction system.
- Polyethylene for irrigation.

 $-\oplus$

3. IPS Fusion System

3.1 Attributes and Characteristics

IPS uses Random copolymer polypropylene or Type 3, which was designed and is manufactured in Europe, as raw material to manufacture the IPS Fusion System. IPS and Germany's DIN, according to their experience in the transformation of polymers and to the various tests performed, assure that it is the best suited to join by fusion, since thanks to its great firmness it has high resistance to the different mechanical requests.

Since it is a copolymer made up by the union of propylene and ethilene monomers, its range of use widens towards low temperature areas, including temperatures below zero. Also, this raw material was specially chosen for the great resistance it grants to the products that are subject to high temperatures and preasure over time.

Physical Properties

Low thermal conductivity

Reduces the spreading of the heat of the fluid that circulates inside (0,21 W/mK); prevents the condensation that normaly occurs on the external surface of metal pipes under specific hydrometric conditions.

Great elasticity

Allows a better absorbtion of the tensions created by the lineal dilation of the pipes (see item 6.1), and offers excellent behavior with vibrations or telluric movements.

Impact resistance

Resists to construction or transport mistreats, or those that occur while functioning (water hammers).

Higher resistance to temperatures and pressure over time

Eternally rust-proof

Ensures a higher flow over time

Internal surfaces are completely smooth and have a minimum friction coefficient, contributing to minimize load loss. They also avoid the buildup of scale, preventing the reduction of the flow area.

- Maximizes the use of network pressure
- See table 6.3 for load loss.
- Light and easy to handle

High resistance to chemicals

Excellent behavior with hard waters and waters with acid and alacaline components, suitable for the conduction of liquids with highly agressive contents. See table 3.6 for resistance to chemicals.

Completely non-toxic

See test results and bromatological suitability trials.

- No transmission of odor, color or flavor to the transported liquid
- Not affected by galvanic currents
- Not affected by microbial corrosion
- Not affected by parasite currents

3.2 Useful life of IPS Fusion System

IPS backs up the quality of its products. It guarantees 50 years of useful life in constant use. This backing is based on:

- The quality of the raw materials used
- The system's design
- The quality of the moulds
- The machinery
- Leading edge technology
- Highly trained personnel
- Constant quality controls

Also, to ensure the system's useful life, raw materials are combined with antioxidants, which extend the use of the pipes over time when they are used to transport liquids at high temperatures.

The exclusive pipe manufacturing system by coextrusion, allows the rational use of additives increasing its concentration in the ineterior white layer. At the same time, it is important to highlight that the fittings have the same concentration of additives as the pipes.

3.3 Random copolymer polypropylene or Type 3 - Properties (tables)

General characteristics		Test method	Measure unit	Value
Density at 23°C		ISO 1183	g/cm³	0.905
MFI (230g/2.16Kg)		ISO 1133	g/10min	<0.5
Mechanical Properties				
Effort at conventional de elasticity limit		ISO 527	MPa	24
Stretching in the limit conventional of elasticity		ISO 527	%	10
Elasticity module		ISO 527	MPa	850
Ball penetration hardness 132/30"		ISO 2039/1	N/mm²	43
Shore D hardness, value 3 s		ISO 868		65
Charpy impact resistance	23°C 0°C -23°C	ISO 179/IeU ISO 179/IeU ISO 179/IeU	KJ/m² KJ/m² KJ/m²	Does not break Does not break 43
Thermic Properties				
Crystallite fusion temperature		ISO 3146	°C	147
Softening temperature Vicat VST / A / 50		ISO 306	°C	135
Lineal dilation coefficient Between 20 and 90°C		DIN 35752	K -1	1.1 · 10 ⁻⁴
Thermal conductivity at 20°C		DIN 52612	WImK	0.21
Specific thermal capacity at 20°C		Adiabatic calorimeter	KJ/Kg · K	1.7
Electrical Properties				
Transversal resistivity		DIN 53482	Ohm/cm	>10 ¹⁶
Superficial dielectric resistance		DIN 53482	Ohm	>10 13
Dielectric hardness		DIN 53481	kV/cm	550-900
Arch resistance		DIN 53484	Class	L4

Table of properties of Random copolymer polypropylene or Type 3

Table of properties for	r thermoplastic insulating f	oam		
Characteristics	Test method	Measure unit	Value	
Cell structure			Closed	
Density	ASTM D 1622	Kg/m³	250	
Thermal conductivity	DIN 52612	W/mK	0.035	
Water permeability	Dir. EU Atc	Waterproof		
Water absorption	IRAM 1582	V/V	1.2%	
Water vapor permeability	ASTM E-96	gr/m²h	0.033	
Impact noise insulation	IRAM 4063	dBA	19	

Table of properties for "MA	AXUM" pipe		
Characteristics	According to values	Measure unit	Value
Thermal conductivity at 20°C	DIN 52612	W/mK	0.0634

3.4 Definitions for the normative design of polypropylene pipes

Service Pressure: The maximun pressure that can be handled by pipes intended to conduct liquids in constant use.

Nominal pressure (NP): Alfanumeric designation related to the mechanical characteristics of a piping system components. It is used for reference purposes and its denomination is normalized according to ISO 161-1:1996.

Safety Coefficient (SC): Specified according to the material and the aplication area. IPS applies the DIN 8077:99 Norm service conditions.

For cold and hot water calculation, the safety coefficient used is 1.25; for heating, the coefficient is 1.5.

SDR (Standard Dimensional Relation): Value that relates the dimensions of the pipe and it is obtained by calculating of the quotinet between the pipe's external diameter and its thikness.

Series (S): Adimentional number used to name the different types of pipes. It is set according to the ISO 4065:1996 Norm.

$$S = \frac{SDR - 1}{2}$$

Design Stress: Of 6.3 MPa. for random polypropilene copolymer (type 3) according to 13470:2005 IRAM EA1 standards.

Comparison between Series (S) and Nominal Pressure (NP) EA1 13470:2005

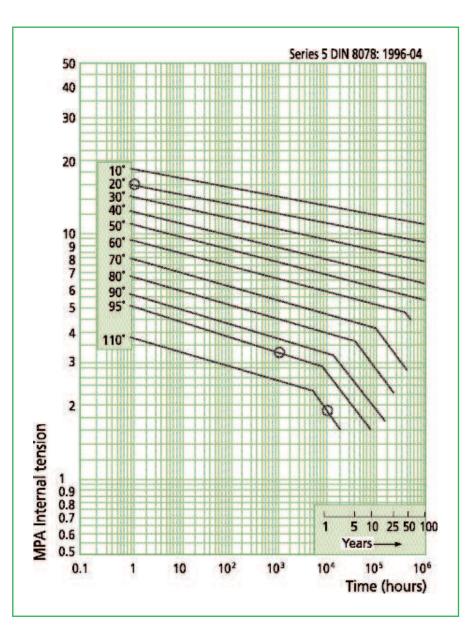
S	SDR	PN (bar)
8.3	17	8.3
5	11	12.5
3.2	7.4	20
2.5	6	25
2	5	32

Nominal pressure and continual service during 50 years

IPS Product	Service Pressure and Working temperature	Maximum resistance to pressure	PN	5
IPS Fusion Fittings	32.3 Kgf/cm ² at 20°C	120 Kgf/cm ²	32	2
Strengthened Fusion Multilayer	30.9 Kgf/cm ² at 20°C	120 Kgf/cm ²	25	2.5
IPS Fusion Multilayer	24.5 Kgf/cm ² at 20°C	100 Kgf/cm ²	20	3.2
S3.2 and Maxum S3.2			43700	
IPS Fusion Pipe (Cold water)	15.5 Kgf/cm² at 20°C	80 Kgflcm ²	12.5	5

3.5 Table of temperatures and pressures through time

Safety coefficient 1.25 Work pressures for Random Copolymer or Type 3 pipes According to DIN 8077: 1999-07Norm


		Series S			1	
		8.3	5	3.2	2.5	2
Temperature °C	Years of Use	Standard Dime	ension Ratio (SDR)			
		17.6	11	7.4	6	5
		Acceptable wo	ork pressure (bar)		1	
10	1	12.7	21.1	33.4	42.0	52.9
	5	12.0	20.0	31.6	39.8	50.1
	10	11.6	19.3	30.6	38.5	48.5
	25	11.2	18.7	29.6	37.3	46.9
	50	10.9	18.2	28.8	36.3	45.7
	100	10.7	17.7	28.1	35.4	44.5
20	1	10.8	18.0	28.6	36.0	45.8
	5	10.2	16.9	26.8	33.8	42.5
	10	9.9	16.4	26.1	32.8	41.8
	25	9.6	16.0	25.3	31.8	40.4
	50	9.3	15.5	24.5	30.9	38.0
	100	9.0	15.0	23.8	29.9	37.7
0	1	9.2	15.3	24.3	30.6	38.5
	5	8.6	14.4	22.8	28.7	36.1
	10	8.4	13.9	22.0	27.7	34.9
	25	8.1	13.4	21.3	26.8	33.7
	50	7.9	13.1	20.7	26.1	32.9
	100	7.7	12.8	20.2	25.5	32.1
0	1	7.8	12.9	20.5	25.8	32.5
	5	7.3	12.1	19.2	24.2	30.5
	10	7.1	11.8	18.7	23.6	29.7
	25	6.8	11.3	18.0	22.6	28.5
	50	6.6	11.0	17.5	22.0	27.7
	100	6.4	10.7	16.9	21.3	26.9
i0	1	6.6	11.0	17.5	22.0	27.7
	5	6.1	10.2	16.2	20.4	25.7
	10	6.0	9.9	15.7	19.7	24.9
	25	5.8	9.6	15.2	19.1	24.1
	50	5.6	9.3	14.7	18.5	23.3
	100	5.4	8.9	14.2	17.8	22.5
0	1	5.6	9.3	14.7	18.5	23.3
	5	5.2	8.6	13.7	17.2	21.7
	10	5.0	8.3	13.2	16.6	20.8
	25	4.8	8.0	12.6	15.9	20.0
20	50	4.6	7.7	12.1	15.3	19.2
0	1	4.7	7.8	12.4	15.6	19.6
	5	4.3	7.2 7.0	11.4	14.3	18.0
	10	4.2		11.1	14.0	17.6
	25 50	3.6 3.1	6.1 5.1	9.6 8.1	12.1 10.2	15.2 12.8
0	1	3.1	6.5	8.1	13.1	12.8
v	5	3.5	5.7	9.1	11.5	16.4
	10	2.9	4.8	7.6	9.6	14.4
	25	2.9	3.8	6.1	7.6	9.6
5	1	2.3	4.6	7.3	9.2	9.0 11.6
5	5	1.8	3.0	4.8	6.1	7.6
	10	1.5	2.6	4.0	5.1	6.4
	,0	1.5	2.0	-1.0		0.4

18

IPS

Safe	ety coefficient 1.5			
		Series (S)		
		5	3.2	2.5
		SDR		
Temperature °C	Years of use	11	7.4	6
		Acceptable v	ork pressure (bar)	
80 °C	50	2.8	4.32	5.53
90 ℃	50	1.8	2.83	3.62

NOTE: All data is reliable with regards to updated norms

3.6 Resistance to Chemicals - Tables

The following table has been provided by Hoechst Germany and it was prepared according to DIN ISO 175 Standards. This information is based on the knowledge and experience of the raw material's manufacturer.

However, this does not imply any legal obligation or responsability on part of IPS S.A.I.C. and F., or the raw material manufacturer. We maintain the right to make changes in accordance to the technological process or future developments. Users have the responsibility to carefully inspect and test the products received. The mentioning of commercial names does not impliy any sort of recomendation from IPS S.A.I.C. and F.

IPS recommends the application of the appropiate precaution norms with regards to the use of aggressive products.

Also, we inform that random copolymer polypropylene or Type 3 is highly resistant to aggresive fluids and therefore it is specially suitable for use in specific cases. This table's values are to be applied to the PP Random Copolymer and not to the metal inserts. In these cases it will be necessary to request specific information; when in doubt or for consultation we recommend contacting our technical department.

Simbols used in this table:

Classification:	* : respective	e boiling point
Resistance:	+ : high	I : Limited

V : possible decoloration

- : Does not resist

Billetovial	Material Concentration		emp.	. PP Temp.		
Wateria	Concentration	20°C	60°C	20°C	60°C	100°C
2 - butendiol - 1.4	technically pure	+		+		
2 - butendiol - 1.4	technically pure	+		+	+	
2 - methylbutane - 2	technically pure	+	/			
Ácetacetic acid	5.1	+				
Acetaldehyde + Acetic acid	90/10	+				
Acetaldehyde	technically pure	+	/	/		
Acetamide		+	+	+	+	
Acetic acid (100% Glacial acetic acid)	technically pure	+	/ V	+	/ V	-
Acetic acid	100%	+	/ V	+	/ V	-
Acetic anhydride	technically pure	+	/	/	-	
Acetic butyl esther		+	/	+	/	
Acetone	technically pure	+	+*	+	+*	
Acetophenone		+		+	/	
Acetyl		+				
Acid for accumulators (battery)		+	+	+	+	
Acrilonitril		+	+	+		
Acronal - Dispersion	common use	+	/			
Acrylic viscosifier	common use	+		+	+	
Activine (Aqueous chloramine 1%)						
Adipic acid esther		+	/			
Aguardiente (liquor)		+	+	+	+	
Air	technically pure	+	+	+	+	+
Alcohol		+		+	+	+*
Alcoholic beverages		+		+		
Alilic acetate		+	+bis/	+	+	
Alilic alcohol (2 - Propenol - 1)	96%	+	+	+	+	
Alilic chloride		/	-			
Alumen	indistinct	+	+	+	+	

		DET	emp.		DD Tom	0
Material	Material Concentration 70			PP Temp. 20°C 60°C 100°		
		20 C	60°C		00 C	
Aluminic potassium aqueous sulphate	indistinct	+	+	+	+	+
Aluminum fluoride	high	+	+			
Aluminum hydroxic		+	+	+	+	
Aluminum metaphosphate		+	+	+	+	
Aluminum metaphosphate	1000	+	+	+	+	
Amilo chloride	100%	/	-			
Amilo phthalate		+	/			
Aminoacid		+	+	+	+	
Ammonium essence	saturated	+	+	+	+	
Ammonium iron sulphate	saturated	+	+	+	+	
Ammonium thiocyanate		+	+	+	+	
Ammonium, gaseous		+	+	+	+	
Ammonium, liquid		+		+		
Amyl acetate	technically pure	+	+	/	-	
Amyl alcohol	technically pure	+	+	+	+	+
Anhydrous antimonium chloride		+	+	+	+	
Aniline	indistinct	+	+	+	+	
Animal oil		+	/	+	/	
Anisette essence		/	-			
Anisol		/	/bis-	/	/	
Antifoam		+	+bis/	+		
Antifreeze (Kfz)	common use	+	+	+	+	+
Antimonium pentachloride		+	+	+	+	
Antimonium trichloride		+	+	+	+	
Apple wine (cider)		+	+	+	+	
Apple wine		+	+	+	+	
Aqua regia	100%	-		-	-	
Aqueos Acetaldehyde	indistinct	+	/	+	+	
Aqueous Acetic acid	70%	+	, +	+	+	+
Aqueous adipic acid	, 0, 0	+	+	+	+	
Aqueous aluminum chloride	indistinct	+	+	+	+	+
Aqueous aluminum sulphate	saturated	+	+	+	+	+
Aqueous ammonium acetate	indistinct	+	+	+	+	+
Aqueous ammonium carbonate	indistinct	+	+	+	+	+
Aqueous ammonium chloride	indistinct	+	+	+	+	+
Aqueous ammonium fluoride	saturated	+	+	+	+	Ŧ
Aqueous ammonium nitrate	indistinct	+	+	+	+	+
Aqueous ammonium phosphate	indistinct	+	+	+	+	+
Aqueous ammonium sulphate	indistinct	+	+	+	+	+
Aqueous ammonium sulphur	indistinct	+	+	+	+	
Aqueous ammonium	indistinct	+	+	+	+	
Aqueous aniline chlorohydrate	indistinct	+	+	+	+	
Aqueous anthraquinone sulphonic (Susp.)	1 10 11 m	+	+	+		
Aqueous arsenic acid	indistinct	+	+	+	+	
Aqueous barium hydroxide	indistinct	+	+	+	+	
Aqueous barium salts	indistinct	+	+	+	+	+
Aqueous benzaldehyde	indistinct	+	+bis/	+		
Aqueous benzoic acid	indistinct	+	+	+	+	+
Aqueous borax	saturated	+	+	+	+	+
Aqueous boric acid	indistinct	+	+	+	+	+
Aqueous bromhydric acid	50%	+	+	+	+	
Aqueous butanodiol	indistinct	+	+	+	+	
Aqueous butyric acid	indistinct	+	/	+		
Aqueous calcium chlorate	saturated	+	+	+	+	
Aqueous calcium chloride	saturated	+	+	+	+	+
Aqueous calcium hypochlorite (Susp.)	indistinct	+	+	+	+	
Aqueous calcium nitrate	50%	+	+	+	+	
Aqueous calcium sulphur	< = 10%	/	/			
Aqueous carbonic acid		+	+	+	+	
Aqueous carboniferous solution		+V	/ V	+V	/ V	
Aqueous chloral hydrate	indistinct	+	+V	/	-	
Aqueous chloramine	saturated	+		+		
Aqueous chlorhydric acid	Saturated	+	+	+V	+V	/ V
Aqueous chloric acid	1%	+	+	+	/	-
Aqueous chloric acid	10%	+	+	+	/	-
Aqueous chloric acid	20%	т	т	+	-	-

21

IPS FUSION Technology

		PE To				PP Temp.		
Material	Concentration	20°C			20°C 60°C			
Aqueous chloroacetic acid	< = 85%	+	+	+	+			
Aqueous chrome salts	indistinct	+	+	+	+			
Aqueous chromic acid	50%	/	-V	/ V	-V			
Aqueous chromic trioxyde	50%	/	-V	/ V	-V			
Aqueous citric acid	saturated	+	+	+	+	+		
Aqueous copper fluoride								
Aqueous copper salts	saturated	+	+	+	+			
Aqueous creosole Aqueous dextrin	diluted 18%	+	+V	+	+V			
Aqueous diglicolic acid	30%	+	++	++	++			
Aqueous ephetin	10%	+	+	+	+	+		
Aqueous ferrous chloride	indistinct	+	+	+	+			
Aqueous fertilizer salts	indistinct	+	+	+	+			
Aqueous fluorboric acid		+	/					
Aqueous fluorhydric acid	40% - 85%	+	/	+				
Aqueous formic acid	10%	+	+	+	+			
Aqueous formic acid	85%	+	+	+	/			
Aqueous fructose (fruit sugar)	indistinct	+	+	+	+	+		
Aqueous glucose	indistinct	+	+	+	+	+		
Aqueous glycerin	indistinct	+	+	+	+	+		
Aqueous glycol	common use	+	+	+	+	+		
Aqueous hexacianoferrate (III)	saturated	+	+					
Aqueous hexafluorosilic acid	40%	+	+					
Aqueous hydrofluosilicic acid	indistinct	+	+					
Aqueous hydrogen sulphur	saturated	+	+	+	+			
Aqueous hydrogenated ammonium carbonate Aqueous hydrosulphite	saturated up to 10%	+	++	++	++			
Aqueous hydrosulphur ammonium	indistinct	+	+	++	+			
Aqueous hydroxylammonium sulphate	12%	+	+	+	+			
Aqueous iron chloride (II)	saturated	+	+	+	+			
Aqueous iron chloride (III)	saturated	+	+	+	+	+		
Aqueous iron nitrate (III)	saturated	+	+	+	+			
Aqueous iron sulphate (II)	saturated	+	+	+	+			
Aqueous iron sulphate (III)	saturated	+	+	+	+			
Aqueous kitchen salt	indistinct	+	+	+	+			
Aqueous Koper chloride	saturated	+	+	+				
Aqueous Koper cyanide (I)	saturated	+		+	+			
Aqueous Koper nitrate	30%	+	+	+	+			
Aqueous Koper sulphate	indistinct	+	+	+	+			
Aqueous lactic acid	indistinct	+	+	+	+	+		
Aqueous lead acetate	indistinct	+	+	+	+			
Aqueous magnesium chloride	indistinct	+	+	+	+			
Aqueous magnesium salts Aqueous magnesium sulphate	indistinct	+	++	++	+	+		
Aqueous magnesium sulphate	indistinct indistinct	+		++	+	+		
Aqueous magnesium suprate	up to 100%	+	++	++	++	+		
Aqueous methylamine	32%	+		+				
Aqueous monochloroacetic acid	5270	+	+	+	+			
Aqueous monochloroacetic acid	indistinct	+	+	+	+			
Aqueous nickel salts		+	+	+	+			
Aqueous nickel sulphate	indistinct	+	+	+	+			
Aqueous oxalic acid	indistinct	+	+	+	+	+		
Aqueous oxygen peroxide	10%	/	-	+	/			
Aqueous oxygen peroxide	30%	/	-	+	/			
Aqueous perchloric acid	20%	+	+	+	+			
Aqueous perchloric acid	50%	+	/					
Aqueous perchloric acid	70%	+	-					
Aqueous phosphoric acid	50%	+	+	+	+	+		
Aqueous phosphoric acid	80% - 95%	+	/ V	+	+V	+V		
Aqueous phytosanitary products	practical use	+	+	+				
Aqueous picric acid	1%	+		+				
Aqueous polymer phosphate	indistinct	+	+	+	+			
Aqueous potassic chromic sulphate	saturated indistinct	+	++	+	++			
Aquipous potassis suppida		+	+	+	+			
Aqueous potassic cyanide Aqueous potassic ferric sulphate	saturated	+	+	+	+			

				200		5	
Material	Concentration	PE T	emp. 60°C	F 20°C	PP Tem 60°C	р. 100°С	Í
Aqueous potassium bichromate	indistinct	+	+	+	+	1	
Aqueous potassium biculoniate	saturated	+	+	+	+	+	
Aqueous potassium bisulphite	saturated	+	+				
Aqueous potassium borate	1%	+	+	+	+		
Aqueous potassium bromate	up to 10%	+	+	+	+	+	
Aqueous potassium bromide	indistinct	+	+	+	+	+	
Aqueous potassium carbonate	indistinct	+	+	+	+		
Aqueous potassium chlorate	indistinct	+	+	+	+	+	
Aqueous potassium chloride	indistinct	+	+	+	+	+	
Aqueous potassium chromate	40%	+	+	+	+	+	
Aqueous potassium cyanide	indistinct	+	+	+	+		
Aqueous potassium dichromate	saturated	+	+	+	+		
Aqueous potassium ferricyanide	indistinct indistinct	+	+	+	+		
Aqueous potassium ferricyanide	indistinct	+	+	+	+		
Aqueous potassium fluoride Aqueous potassium hexacyanideferrous	indistinct	-	+	+	+		
Aqueous potassium nexacyanidererrous Aqueous potassium hydrosulphate	saturated	++	++	++	+ +	+	
Aqueous potassium hydrosulphur	saturated	+	+	т	т	т	
Aqueous potassium hydroxide	indistinct	+	+	+	+		
Aqueous potassium hypochlorite	saturated	/	-	1			
Aqueous potassium iodire	indistinct	+	+	+	+		
Aqueous potassium perborate	indistillet	+	+				
Aqueous potassium perchlorate	1%	+		+	+		
Aqueous potassium perchlorate	indistinct	+	+	+	+	+	
Aqueous potassium perchlorate	up to 10%	+	/				
Aqueous potassium permanganate	up to 6%	+	+V	+	+V		
Aqueous potassium persulphate	indistinct	+	+	+	+		
Aqueous potassium phosphate	saturated	+	+				
Aqueous potassium sulfite	saturated	+	+	+	+		
Aqueous potassium sulphate	indistinct	+	+	+	+		
Aqueous potassium sulphur	saturated	+	+	+	+		
Aqueous potassium tetracyanide	saturated	+	+				
Aqueous potassium thiosulphate	saturated	+	+	+	+		
Aqueous propanol	7%	+	+	+	+		
Aqueous silicic acid	indistinct	+	+	+	+		
Aqueous silver nitrate	indistinct saturated	+	+	+	+	+	
Aqueous silver salts Aqueous soap solution	indistinct	+	++	++	++		
Aqueous soda (sodic carbonate)	indistinct	+		+		+	
Aqueous sodic bisulphate	saturated	+	++	+	++	Ŧ	
Aqueous sodic hydrocarbonate	saturated	+	+	+	+	+	
Aqueous sodic sulfhydrate	saturated	+	+	+	+	· ·	
Aqueous sodic sulphate	indistinct	+	+	+	+		
Aqueous sodic thiosulphate	40%	+	+	+	+		
Aqueous sodium acetate	indistinct	+	+	+	+	+	
Aqueous sodium benzonate	36%	+	+	+	+		
Aqueous sodium benzonate	indistinct	+	+	+	+		
Aqueous sodium bicarbonate	saturated	+	+	+	+	+	
Aqueous sodium bisulphate	saturated	+	+	+	+		
Aqueous sodium bisulphite	saturated	+	+	+	+		
Aqueous sodium carbonate	indistinct	+	+	+	+	+	
Aqueous sodium chlorate	saturated	+	+	+	+		
Aqueous sodium chloride	indistinct	+	+	+	+	+	
Aqueous sodium chlorite	50%	+		+	/		
Aqueous sodium hydroxide	indistinct	+	+	+	+		
Aqueous sodium hypochlorite	with 12.5% active chlorine	/	-	/	/	i -	
Aqueous sodium nitrate	indistinct	+	+	+	+		
Aqueous sodium nitrite Aqueous sodium perborate	indistinct indistinct	+	+ /	++	+	+	
Aqueous sodium peroxide	10%	++	+	+	+	+	
Aqueous sodium peroxide	saturated	+	++				
Aqueous sodium phosphate	saturated	+	+	+	+	+	
Aqueous sodium phosphate	indistinct	+	+	+	+		
Aqueous sodium sulfite	indistinct	1		+	+	+	
Aqueous sodium sulphate	indistinct	+	+	+	+	+	
Aqueous sodium sulphate	saturated	+	+	+	+	+	

23

-

IPS FUSION Technology

		PE T	emp.	PP Temp.				
Material	Concentration			20°C	100°C			
Aqueous sodium sulphur	saturated	+	+	+	+			
Aqueous sodium tetraborate	saturated	+	+	+	+	+		
Aqueous solution sulphate	indistinct	+	+	+	+			
Aqueous starch	indistinct	+	+	+	+			
Aqueous succinic acid	50%	+	+	+	+			
Aqueous sugar cane	indistinct	+	+	+	+			
Aqueous sulphur dioxyde	indistinct	+	+	+	+			
Aqueous sulphuric acid	70%	+	+	+	/			
Aqueous sulphuric acid	80%	+	+	+	/			
Aqueous sulphuric acid	98%	/	-	/	-			
Aqueous sulphuric acid	up to 50%	+	+	+	+			
Aqueous tannic acid	10%	+	+	+	+			
Aqueous tannin Aqueous tartaric acid	indistinct	+	++	++	++			
Aqueous tin chloride (II)	indistinct	+	+	++	+			
Aqueous tin chloride (IV)	saturated	+	+	+	+			
Aqueous trichloroacetic acid	50%	+	+	+	+			
Aqueous Trietanolamine	50 %	+	/	+				
Aqueous trietanolamine	indistinct	+	1	+				
Aqueous trimethylolpropane		+	+	+	+			
Aqueous urea	up to 33%	+	+	+	+			
Aqueous zinc chloride	indistinct	+	+	+	+			
Aqueous zinc salts	indistinct	+	+	+	+			
Aqueous zinc sulphate	indistinct	+	+	+	+	+		
Aromatic acid	50%	+	+	+	+			
Aromatic oil		/	-	/	/bis-			
Arsenic anhydric		+	+	+	+			
Ascorbic acid		+	+	+	+			
Asphalt		+	/ V	+	/ V			
Aspirin		+		+				
Beer yeast	common use	+	+	+	+			
Beer		+	+	+	+			
Bees wax		+	/bis-	+	/bis-			
Beet juice		+	+	+	+	+		
Benzaldehyde in iso propilic alcohol	1%	+	+					
Benzene chloride		/	-	/	-			
Benzene	technically pure	/	-	/	-			
Benzolic mix	80/20	+		/	-			
Benzolium chloride		/	/	/				
Benzolsulfonic acid		+	+	+	+			
Benzyle chloride		/	-	/	-			
Benzylic alcohol		+	+	+	+			
Bismuth salts		+	+	+				
Bitumen Blaach bisulabita		+	/ V	+	/ V			
3leach bisulphite 3oron trifluoride		+	+ +bis/	+	+			
Bovine fat		++	+bis/	+	+			
Break fluid		+	+	+	+			
Brine		+	+	+	+			
Brome vapors		-	1	-				
Brome water	saturated	+		1				
Bromic acid	high	-		1				
Bromine chlorine methane		-		-				
Butadiene	technically pure	1	-	1	-			
Butanetriol	indistinct	+	+	+	+			
Butanol	indistinct	+	+	+				
Butanon		+	/bis-	+	/			
Buten - Fluid glycol	technically pure	+	+	+				
Buthylic esther glycolic acid		+	+					
Butilic alcohol		+	+	+				
Butilphenol	technically pure	+	+	+				
Butilphenone	technically pure	-		-				
Butoxile		+	/	+				
Butter		+		+	+			
Butyl - Glycol	technically pure	+		+				
Butyl acetate	technically pure	+	1	1	-			

		PE I	emp.		P Tem	0.
Material	Concentration	20°C				100°C
Butyl Acrilato		+	/	20°C +		
Butyl benzylftalate		+	/ +	т		
Calcium carbide		+	+	+	+	
Calcium carbonate (Cal)		+	+	+	+	+
Calcium carbonate		+	+	+	+	+
Calcium hydroxide		+	+	+	+	
Calcium oxide		+	+	+	+	
Calcium phosphate		+	+	+	+	
Calcium sulphate		+	+	+	+	
Camphor oil		-		-		
Camphor		+	/	+		
Carbazol		+	+	+	+	
Carbolic acid		+	+V	+	+V	
Carbolic oil (Fenol)		+	+V	+	+V	
Carbolin Carlo an alianida	common use	+		+		
Carbon dioxide	technically pure	+	+	+	+	
Carbon sulphur	F.0.0/	/		/		
Caustic potash Caustic soda	50%	+	+	+	+	+
Caustic soda Cetilic alcohol						
Cetilic alconol Chloral (Triclhoracetaldehyde)	tochnically pure	+	+	+		
Chlorated lime chloride	technically pure	+	++	++	++	
Chlorhydric ethylene	technically pure	+	++	++	++	
Chlorhydrin glycerin		+	++	++	+	
Chloric acid, see Perchloric acid		т	т	т		
Chlorine bleach		/	-	/	/	-
Chlorine water	saturated	+	/	/	-	
Chlorine, aqueous solution	saturated	+		/	-	
Chlorine, dry gas	Satarated	. /	-	-		
Chlorine, humid gas		/	-	-		
Chlorine, liquid		-		-		
Chlorocarbonic acid esther		+	/			
Chloroform	technically pure	/bis-	-	/	-	
Chloropicrin		+bis/	-			
Chlorosulphonic acid	technically pure	-		-		
Chlorous acid		+bis/	/	+bis/	/	
Chrome alumen	saturated	+	+	+	+	
Chrome anodic mud		+	+	+		
Ciclane	common use	+	+	+	+	
Ciclohexane		+	+	+		
Citric juice		+	+	+	+	
Cliclohexanone		+	/	+	/	
Clophen A 50 y A 60		+	/bis-	+	/	-
Coconut fat alcohol		+	/	+	/	
Coconut oil		+		+		
Coffee extract		+	+	+	+	
Cognac		+	.)/	+		
Coloring		+V	+V		,	
Combustion engine oil Concentrated cola		+	+bis/	+	,/	
		+	+	+	+	
Condensed vapor Consistent aluminum chloride		+ +	++	++	++	
Consistent aluminum chloride Consistent aluminum sulphate		+	++	++	++	
Cotton seedes oil	technically pure	+	++	++	++	
Creosate	technically pure	+	+ +V	++	+ +V	
Creosole	100%	+	+v /V	+	+v /V	
Crotonaldehyde	technically pure	+		+	, v	
Cumarone resin	connearly pure	+	+	+		
Cyclohexanol		+	+	+	+	
Cyclohexanone		+	т /	+	- - /	
Dekalin	technically pure	+	/	/	,	
Demineralized alcohol	96% (Vol.)	+		+		
Destabilizer		+	+	+	+	
Detergent		+	+	+	+	
Detergent	usual	+	+	+	+	
Detergent, synthetic	high	+	+	+	+	

 \rightarrow

 \oplus

IPS FUSION Technology

Material	Concentration	PE T	PP Tem	lemp.		
	Concentration	20°C	60°C	20°C	100°C	
Detonating gas	common use	+		+		
Dextrin	18%	+	+	+	+	
Dextrose		+	+	+	+	
Diaminoethane	technically pure	+	+	+	+	
Dibromoethane		/	-	/		
Dibromureethylene Dibutilftalate	technically pure	/ +	- /	+	/	
Dibutilitate Dibutyl ether	technically pure	+ +bis/	-	+	-	
Dibutyl phthalate	technically pure	+	/	, +	1	
Dibutyl sebacate	teennearly pare	+	/	+	,	
Dichloroacetic acid	50%	+	+	+		
Dichloroacetic acid	technically pure	+	/ V	+		
Dichlorobenzene		/	-	/		
Dichlorodyfenil - trichlorine - ethane		+	+	+	+	
Dichloroethane		/	/	+		
Dichloroethylene	technically pure	-				
Dichromate - Sulphuric acid	high	-	,	-	,	
Diesel Fuel (Gasoil) Diethanolamine	to choically pure	+	/	+	/	
Diethylene glycol	technically pure	+	+	++	+	
Dietylic ether		+ +bis/		+ /	T	
Difenil oxide		+	/	/		
Difenilamine		+	/			
Dihexyl ftalate	technically pure		,	+	1	
Diisobutyl ketone	technically pure	+	/bis-	+	-	
Diisodecyl ftalate	technically pure	+	/	+	/	
Di-isopropilic ether		+bis/	-			
Dimethylamine		+	/	+		
Dimetihylformamide	technically pure	+	+bis/	+	+	
Dinolyl phthalate	technically pure	+	/	+	/	
Dioctyl phthalate		+	/	+	/	
Dioxane Dioxalia ale ande ate		+	+	+	/	-
Disodic phosphate Disodium sulphate		+	+	+	+	
Distilled water		+ +	++	++	+ +	+
Dodecil - benzene sulphuric acid (Toluene)		+	т /	+	т	т
Drinkable water, contains chlorine		+	+	+	+	+
Dry carbonic acid		+	+	+	+	· ·
Eau de Javelle		+bis/	-	+bis/	/	
Eau de Labarraque		+bis/		+bis/	1	
Epiclorhidryn		+	+	+		
Estearic acid		+	/	+	/	
Esther, aliphatic	technically pure	+	+bis/			
Estheric dichloromethyl acid		+	+	+	+	
Estirol		/	-	/	-	
Ethane Ethanol	96%	+	+			
Ethanolamine		+	+	+	+	+
Ether	technically pure	+ +bis/	/*	+ /		
Etheric oil		/	-	/	-	
Ethyl acetate	technically pure	+	/	, +	1	
Ethyl chloride	technically pure	/*	,	-	,	
Ethyl oxide, gaseous	technically pure	+	+	+		
Ethylbenze	technically pure	/		/	-	
Ethylene chloride	technically pure	/		-		
Ethylene diamine	technically pure	+	+	+	+	
Ethylene dichloride		/	-	/		
Ethylene		+	+			
Ethyleneglycol		+	+	+	+	+
Ethylenglycolmonobuthylether	technically pure	+		+		
Ethylic alcohol + Acetic acid	industrial use	+	+	+	+	
Ethylic alcohol	96%	+	+	+	+	+
Ethylic chlorine Ethylic ether	technically pure	+	+V /*	+ /	+V	
EUTVIC EUTEI	technically pure	+bis/		/		
Euro B		/	/			

		DET	0.00010		D Torrer	and a second second
Material	Concentration	20°C	emp. 60°C	20°C	PP Temp	<u>э.</u> 100°С
- · · · · · · · ·			1		00 C	100 C
Fat acid amides		+	/ +bis/	+		
Fat acid Fat alcohol		+	+015/ /	+	+	
Fat	technically pure	+	/ +	++	+	
Fenil sulphonate	technically pure	+	+	+	+	
Fixing bath	common use	+	т	+	+	
Flavored molasses	common use	+	+	+	+	
Fluoride, gaseous		-	1	-		
Fluorsilicic acid	indistinct	+	+			
Formaldehyde	up to 40%	+	+	+	+	
Formamide sulfoxide		+	+			
Formamide		+	+	+	+	
Frigen 12 (Freon 12)	100%	/	-	/		
Fruit pulp		+	+	+	+	
Fruit sauce, fermented		+	+	+	+	
Fruit sauce, unfermented	indistinct	+	+	+	+	+
Fruit syrup	indistinct	+	+	+	+	+
Ftalatic acid dibuthylic esther	technically pure	+	/	+	/	
Ftalatic acid esther		+	+bis/	+	+	
Ftatalos acid	50%	+	+	+	+	
Fuel oil		+	/	+	/	
Fuel		+	/	+	/	
Fuming nitric acid		+	+	+	-	
Furfurilic alcohol		+	+V	+	/ V	
Furfurol		+	/			
Galvanic bath for electrolysis		+bis/	/			
Gaseous bromhydric acid	technically pure	+	+			
Gaseous bromine methane	technically pure	-		-		
Gaseous butane		+		+	+	
Gaseous carbon monoxide		+	+			
Gaseous chloromethane	technically pure	/		-		
Gaseous glycolic acid	up to 70%	+	+	+		
Gaseous hydrogen sulphur		+	+	+	+	
Gaseous methyl bromide	technically pure	-		-		
Gaseous phosgene		/		,/	/	
Gaseous sulphur dioxyde		+	+	+	+	
Gaseous, humid and dry chlorohydrate		+	+	+	+V	
Gasoline	technically pure	+	/	/	-	
Gelatin		+	+	+	+	
Genantin		+	+	+	+	+
Gin		+		+		
Glucose		+	+	+	+	
Glue		+	+	+		
Glutin glue	common use	+	+	+	+	
Glycocoll		+	+	+	+	
Glysantin		+	+	+	+	+
Grisiron 8302		/	/			
Grisiron 8702		+	+			
Gross petroleum		+	/	+	/	
Halothan		/	/bis-			
Heptane		+	/	/	/	
Hexa - Aqueous sodium metaphosphate	saturated	+		+	+	
Hexaethanol		+	/	+		
Hexane		+	/	+	/	
Honey		+	+	+	+	
Hydracine hydrate		+	+	+		
Hydraulic fluid		+	/			
Hydroquinone		+V	+V	+V		
Hypochloric acid		+	/	+bis/	/	
lodine - potassium iodire	3% iodine	+	+	+	+	
lso - propanol		+	+	+	+	
Isoamilic alcohol	technically pure	+	/			
Isobutilic alcohol		+	+	+		
Isobutyric acid	technically pure	+	1			
Isooctane		+	/	+	/	
Isopropanol (isopropilic alcohol)	technically pure	+	+	+	+	+

27

 \oplus

IPS FUSION Technology

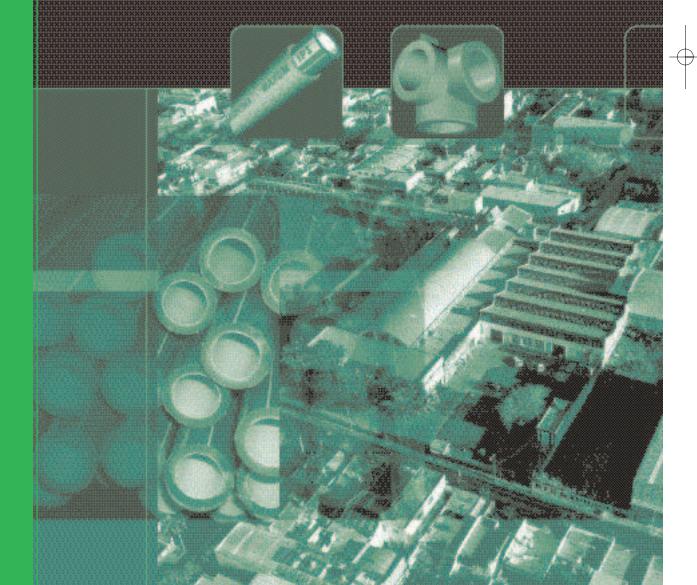
Material	Concentration	PE T	P Temp.			
Iviaterial	Concentration	20°C	60°C	20°C 60°C		100°C
Isopropilacetate	100%	+	/			
Isopropileter	technically pure	+bis/	-	/	-	
Kerosene	21	+	/	/	/	-
Kerosene		+bis/	/bis-	+bis/		
Ketone diethyl		+	/			
Lactose		+	+	+	+	
Lanoline		+	+	+	/	
Latex		+	+	+	+	
Lead tetraethyl		+		+		
Lemon juice		+	+	+	+	
Lime water		+	+	+	+	
Linseed oil	technically pure	+	+	+	+	+
Liquid bromine	100%	-		-		
Liquid butilen	technically pure			/		
Liquid phosgene	100%	-		-		
Liquid soap		+	+	+	+	
Liquor Lisol		+	/	+	/	
Lisoi Lithium bromide		+ +	/ +	++	/ +	
_ubricant oil	technically pure	+	++	+ +bis/	++	
Machine oil		+	+ /	+ +	+ /	-
Magnesium carbonate		+	/	+	+	
Magnesium fluorosilicate		+	+			
Magnesium hydroxide		+	+	+	+	
Magnesium iodire		+	+	+	+	
Magnesium sulphate		+	+	+	·	
Valic acid	50%	+	+	+	+	
Valt		+	+	+	+	
Malt fermentation	common use	+	+	+	+	
Malt oil		+	/	+	/	
Margarine		+	+	+	+	
Marmalade		+	+	+	+	+
Mayonnaise		+		+		
Mercury chloride		+	+			
Mercury salts		+	+	+	+	
Mercury		+	+	+	+	
Metallic corrosive		+				
Metallic soap		+	+	+		
Methacrylic acid		+	+	+	+	
Methanol	technically pure	+	+	+	+	
Methilic alcohol		+	+	+	+	
Methoxi butyl acetate		+	/	+		
Methoxylbutanol		+	/	+		
Methyl - 4 - penthanol - 2	coturoted	+	+bis/V	+		
Methyl benzoic acid Methyl acetate	saturated technically pure	/				
Methyl acetate Methyl boric acid	technically pure	+	/bis-	+	+	
Methyl chloride, gaseous	technically pure	+	1012-	-		
Methyl metacrilate		+	+	_		
Methyl salicylate		+	+ /	+		
Methylacrilate		+	/ +			
Methylbenze		- /	- -	/	-	
Vethylcyclohexane		/	/bis-	1		
Vethylene chloride		/	/*	/	_*	
Vethylethylcetone	technically pure	+	<i>'</i> /	, +	1	
Vethylglycol		+	+	+	+	
Vethylisobutylamine		+	+bis-	+		
Vethylpropylcetone		+	/	+		
Vethylpyrrolidone		+	+			
Methylsulphuric acid	50%	+	+	+	+	
Vilk		+	+	+	+	+
Vineral oil	no additives	+	+	+	/	-
Vineral water		+	+	+	+	+
Vint essence		+		+		
Vint		+	/	+		
Molasses		+	+	+	+	

	State of the state of the state
	II Allen Veller
100	~ ~»»/ ~ /
Ser &	A CONTRACTOR OF A CONTRACTOR O
Contraction of the Contraction	S S & S and

		DE T	omo		PP Tem		
Material	Concentration	PE Temp. 20°C 60°C		20°C		<u>יף.</u> 100°C	
Monochloroacetic acid ethylic esther		+	+	+	+		
Monochloroacetic acid methylic esther		+	+	+	+		
Monochlorobenzene		/	-	+			
Morphine		+	+	+	+		
Moth balls		+	/	+			
Mowilith - Dispersion		+	+	+			
Mustard		+	+	+	,		
Nail polish remover Natural gas	technically pure	++	/	++	/		
Nickel chloride	technically pure	+	+	+	+		
Nickel nitrate		+	+	+	+		
Nicotine		+	+				
Nicotinic acid	< = 10%	+		+			
Nitro - propanol		+	+	+	+		
Nitrobenzene		+	/	+	+		
Nitrocelulose		+		+			
Nitrotoluene		+	/	+	/		
Noni alcohol		+	+	+			
Normal benzene DIN 51635 Nut oil		++		/+	-+		
Octil creoslate	technically pure	+ /	-	+ /	+		
Oil for two cycle motors		+	-	+			
Oils	indistinct	-	,	-			
Oleic acid		+	/	+	/	-	
Olive oil		+	+	+	+	+	
Optical whiteners		+	+	+	+		
Orange juice		+	+	+	+		
Oxychloride phosphorus		+	/	+	/		
Oxygen	FO and a	+	+	+	+		
Ozone Palm oil	50 pphm	/ +	-	++	/		
Palmitic acid		+	+	+	+		
Palmitilalcohol		+	+	+	+		
Paraffin - Emulsion	common use	+	/	+	+		
Paraffin oil		+	+	+	/	-	
Paraformaldehyde		+	+	+			
Peanut oil	technically pure	+		+	+		
Pentanol		+		+			
Perchlorethelene		/	-	/	-		
Petroleum ether		+	/	+	/		
Petroleum Phalvpathul acetata		+	/	/			
Phelynethyl acetate Phenol resin		++	++	++	+		
Phenol		+	+V	+	+V		
Phenylhydracine	technically pure	/	/bis-	/			
Phenylhydracinehydrochloride		+	-	+			
Phosphorus pentoxyde	100%	+	+	+			
Phosphorus trichloride		+	/	+			
Photographic developer		+V	+V	+V	+V		
Phthalate hexidiethyl		+	/	+	/		
Pine essence		+		+	+		
Pine oil Pineapple juice		+		+	+		
Piridine		++	+ /	+ /	+ /		
Poliglycol		+	+	+	+		
Polyacrylic acid		+	+				
Polyester acid		/	-	/			
Polyester laminator		+	+bis/	+			
Polysolvan O		+	+				
Potassium nitrate	indistinct	+	+	+	+		
Potassium permanganate		+	+	+			
Propane dichlorine		/	-				
Propane dichlorine	to choi lle	/	-				
Propane, gaseous Propargylic alcohol	technically pure indistinct	+		+			
	IDDISUDCT	+	+	+	+		

IPS FUSION Technology

Material	Concentration	PE T	emp.		PP Temp.			
Material	Concentration	20°C	60°C	20°C	60°C	100°C		
Propionic acid	100%	+	+	+	+			
Propylene dichloride		-		-				
Propylene glycol		+	+	+	+			
Prussic acid		+	+	+	+			
Pseudocumol		/	/					
Quinine		+	+	+	+			
Residual gas with sulphuric acid	indistinct	+	+	+	+			
Residual gas, carboniferous acid	indistinct	+		+	+			
Residual gas, carboniferous dioxide	indistinct	+	+	+	+			
Residual gas, carboniferous monoxide	indistinct	+	+	+	+			
Residual gas, with chlorydric acid (humid)	indistinct	+	+	+	+			
Residual gas, with fluoramine	traces	+	+					
Residual gas, with nitrose	traces	+	+					
Residual gas, with sulphuric trioxide	traces	-		-				
Residual gas, with sulphuryl	low	+	+	+	+			
Residual gases, dry	indistinct	+	+	+	+			
Resin oil	indistinct	+	+	+	+			
Sagrotan	25%	+	/	+	/			
Salicylic acid	indistinct	+	+	+	+			
Sauerkraut (fermented cabbage)		+	+	+	+	+		
Seawater								
Septic water		+	+	+	+			
Shoe polish		+	+	+	+			
Silicone - emulsion	common use	+	+	+	+			
Silicone oil	technically pure	+	+	+	+	+		
Silver nitrate		+	+	+	+			
Soda bleach	saturated	+	+	+	+	+		
Sodic hydroxic		+	+	+	+			
Sodium aluminum sulphate		+	+	+	+			
Sodium borate		+	+	+	+			
Sodium bromide		+	+	+	+			
Sodium chromate		+	+	+	+			
Sodium cyanide		+	+	+	+			
Sodium dichromate		+	+	+	+			
Sodium dodecyl benzene sulphate		+	+	+	+			
Sodium ferricyanide		+	+	+	+			
Sodium fluoride								
Sodium hexacyanide (II)		+	+	+	+			
Sodium hydroxide, solid		+	+	+	+			
Soft soap		+	+	+	+			
Solvent gasoline	technically pure	+	/	/	-			
Soy oil		+	+	+	/			
Spindle oil		+bis/	/	+	-			
Stain remover		+bis/	/					
Sulphur chloride	technically pure	-		-				
Sulphur trioxyde		-		-				
Sulphur		+	+	+	+	+		
Sulphuric chromic acid		-		-				
Sulphuric ether		+bis/	/*	/				
Sulphurous acid		+	+	+	+			
Sulphuryl chloride		-		-				
Sweet syrup		+	+	+	+	+		
Tan extract, vegetable	common use	+		+	/			
Tar oil		+V	/ V	+V				
Tetrabromomethane		/bis-	-	/bis-				
Tetrachloroethane		/bis-	-	1	-			
Tetrachloroethylene		/bis-	-	/	-			
Tetrachloromethane	technically pure	/	-	-				
Tetractilendiamin acid		+	+	+	+			
Tetrahidrofurano	technically pure	/bis-	-	/	-			
Tetrahydronaphtalene (Tetralin)	technically pure	+	-	-				
Thinner		+	/	+	/			
Thionyl chloride		-		-				
Thiophene		/	-	/	-			
Tincture of iodine, DAB 6	common use	+	/ V	+				
Tincture		+	+	+	+			


Cears.								
Material	Concentration	PE T	emp.	PP Temp.				
Waterial	Concentration	20°C	60°C	20°C	60°C	100°C		
Tioglicolic acid		+	+	+	+			
Toilet solution, aqueous	technically pure	+	+	+	+			
Toilet solution, solid		+	+	+	+			
Toluic acid	saturated	/						
Toluol	technically pure	/	-	/	-			
Tomato juice	21	+	+	+	+			
Transformers oil	technically pure	+	/	+	/			
Tributylphosphate	21	+	+	+	+			
Trichloracetaldehyde	technically pure	+	+	+	+			
Trichlorbenzene	5.1	-	-					
Trichlorethylene phosphate		+	+	+				
Trichlorethylene	technically pure	+bis/	-	/	1			
Trichloroacetic acid	technically pure	+	/bis-	+				
Tricreil - phosphate	·····	+	+	+	1			
Trietanolamine	saturated	+	+V	+	, +V			
Trietihylenglicol	Saturated	+	+	+	+			
Trilon		+	+					
Trimethylborate		+	/bis-					
Trioctilphosphate		+	/013-	+				
Triolhexane		+	+	+	+	+		
Trisodic phosphate		+				+		
	to choically pure	+ +bis/	+ /	+	+			
Turpentine Tutogen U	technically pure							
		+	+	+	+			
Tween 20 and 80		+	-	+	+			
Unprimed cod liver oil	1. 220/	+	/	+				
Urea, aqueous	up to 33%	+	+	+	+			
Uric acid		+	+	+				
Urine		+	+	+	+			
Varnish	high	+	+bis/					
Vaseline oil	technically pure	+bis/	/	+		-		
Vaseline	technically pure	+bis/	/	+	/			
Vegetable and animal oil		+	+bis/	+	+bis/			
Vinegar (wine vinegar)	common use	+	+	+	+			
Vinilidenchloride	technically pure	-		-				
Vinyl acetate		+	+	+	/			
Viscose solution		+	+	+	+			
Viscosifier (photographic)		+	+	+	+			
Viscosifiers		+	+	+	+			
Vitamin C		+		+				
Vitamins preparation, dry		+		+				
Water glass		+	+	+	+			
Water vapor		+	+	+	+			
Wax alcohol		/	/	/	-			
Wax		+	+bis/	+	+bis/			
Whale sperm		+	/	+				
Whey		+	+	+	+			
Whisky		+		+				
Whitening bleach with 12.5% active chlorine		/	-	/	/	-		
Wine vinegar	common use	+	+	, +	+			
Wine		+		+	+			
Xylol		+ /	-	- -	т			
Yeast		+	+	+				
Zinc carbonate								
Zinc chloride		+	+	++	+			
Zinc estearate			+		+	+		
		+	+	+	+	+		
Zinc fat		+	+	+	+			
Zinc oxide		+	+	+	+			

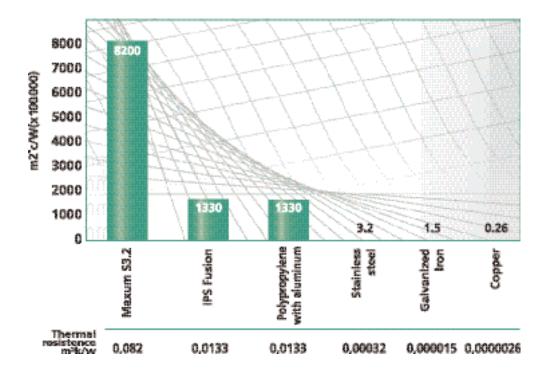
 \oplus

Đ

4. Special Developments

4.1 Piping

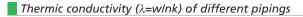
Maxum S3.2

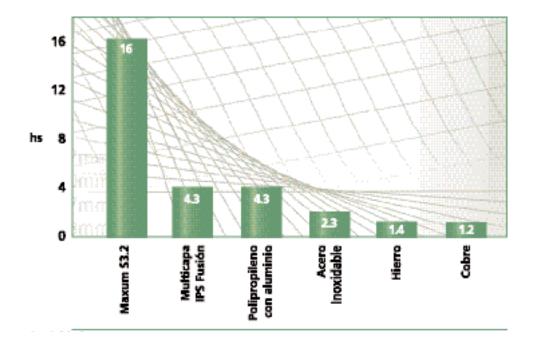

IPS's persistent innovation resulted in the development of the ideal piping for radiator heating and hot water installations. MAXUM is the only product with an exclusive closed cell isolating thermoplastic foam layer, manufactured by coextrusion over a Multilayer IPS FusionS3.2 pipe; achieving much higher thermal and mechanical resistance with the smallest external diamerter in the market.

Maxum S3.2 Main Advantages

• Excellent thermal insullation

MAXUM's thermal resistance is 30.000 times superior than that of copper and between 5 and 6 times superior than that of other polypropylene pipes without insulation, therefore it reduces the transported liquid's heat loss to the minimum.




It is possible to achieve important gas, electricity, water and time savings thanks to this insulation since the piping acts as a thermos in itself, allowing it to rapidly reach the desired temperature.

• Extension of water heater useful life:

There is no need to over-heat. Gas water heaters, tank water heaters, boilers, etc., can achieve the same results working at a lower demand level.

Delays freezing

• Higher resistance to impact

MAXUM's thermoplastic foam coating also constitutes an effective cushion and protective barrier against impact, effectively protecting the pipes from bad handling/damage during transportation, and installation.

• Greater outdoor useful life

For those pipes exposed to harsh weather conditions, MAXUM's thermoplastic foam offers higher ultraviolet ray protection.

Better behavior at extreme temperatures

MAXUM pipes are specially indicated for extreme climate regions, either for high temperature areas or those with temperatures below zero.

Acoustic insulation

MAXUM considerably reduces the noises caused by "water hammer" vibration and pressure variations.

• Lack of condensation

The thermal insulation also prevents the condensation of humidity on the pipe's surface and consequetly stops water from spreading towards the wall's exterior. Because of its manufacturing system, there are no gaps between the thermoplastic foam and the pipe, preventing any possible condensation, which could lead to delamination.

Easy installation

MAXUM's thermoplastic foam coating avoids the need to cover the piping, allowing free dilation. In addition, MAXUM offers the higher thermal resitance with the smallest external diameter in the market, avoiding the need for large gutters when installing.

4.2 Fittings

IPS fittings are injected they have the highest technical development level in the country. Among its most important characteristics and advantages is the fact that they are developed for a nominal pressure of 25 kgf/cm² and whilst having the smallest size in the market, and advantage to both its installation and performance. Also, IPS produces with an extensive selection of exclusively developed fitting with hardened metal inserts –manufactured with a copper alloy covered in nickel– allowing union compatability with all other piping systems.

Corner elbow

IPS has exclusively designed the "rapid flow" corner elbow for its accessory line. It is an ideal piece to reach the corner of the installations with a three-way derivation, optimizing the time and space available.

4.3 Accessories

IPSOLAR strip

It is the self-adhesive strip to protect pipings and fittings from sun exposure. The protection material is Anti UV laminated aluminum. It is placed helicoidally, covering with each turn the end of the prior turn, with a superposition of no less than 5mm at a 60° angle, which increases along with the pipe's diameter. If its use is exposed, it can be applied following the pipe's direction. After applying, the covered sections must be pressed by hand to avoid air bubbles.

Pipe diameter	20mm	25mm	32mm	40mm	50mm	63mm	75mm	- 90mm
Strip yield in m	5	4	3	2.5	2	1.5	1	0.5

IPSOBAND Strip

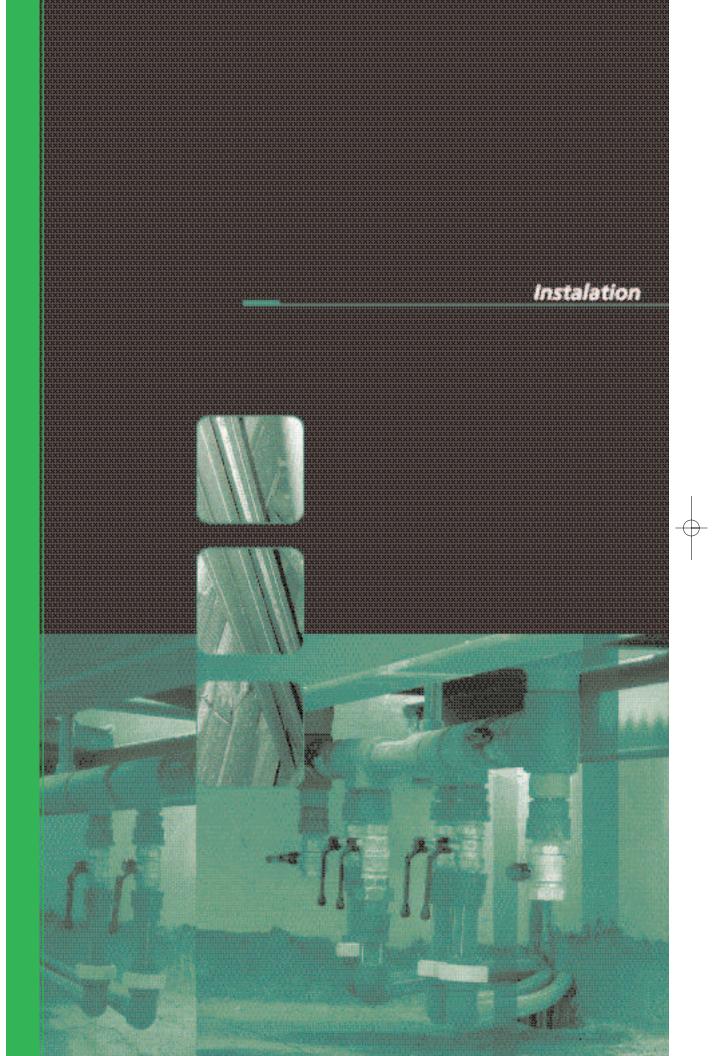
Self-adhesive strip to protect piping and fitting from sun exposure or low temperatures. It provides thermo-acustic insulation thanks to its closed cell thermoplastic foam coating.

UV protection: Laminated aluminum **Thermo-acustic insulation:** Foam with a thikness of aprox. 2mm. **Insulation index:** 0.09 Kcal/hm°C.

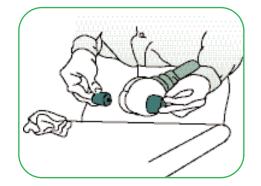
It must be installed in a helicoidal manner without any gaps, superposing layers by no less than 5 mm at a 60° angle, which increases along with the pipe's diameter. Once applied, the adhesive sticks over time.

Pipe diameter	20mm	25mm	32mm	40mm	50mm	63 <i>mm</i>	75mm	90mm
Strip yield in m	4.5	3.5	3	2.5	2	1.5	1	0.5

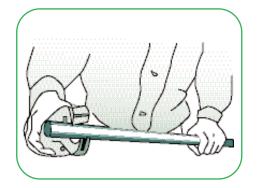
They are manufactures with an incorporated peg. It is sold with the corresponding screw. The curved support follows the curve of the pipe. The width of its body, as well as the use of titanium dioxide extends its outdoor life. It is rust-proof and respects the separation between the pipe and the wall. 20mm to 63mm diameters.


Fusion device

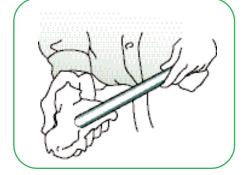
It is a 1000 W heating iron thermostatically regulated by our laboratory. It can work with fusion welding sockets of all diameters. It has a small design in the front part, so that it can be inserted in the wall gutters.



 \oplus

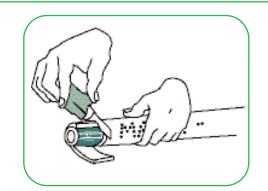

5. Installation

5.1 IPS Fusión Technology



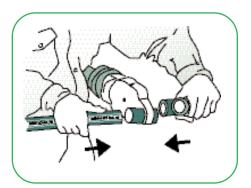
1. Plug in the fusion device, after conveniently placing and tightening the sockets with an Allen wrench. Make sure they are clean, dry and free of dust. Ensure that there is a good contact in between both sockets and the tool to reach an homogeneous temperature.

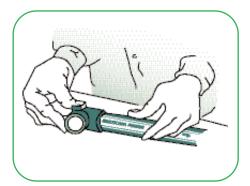
2. Check the fusion machine lights, the green one that indicates the power (always on) and the red one, that when it goes off it means that the tool has reached its optimal working temperature.

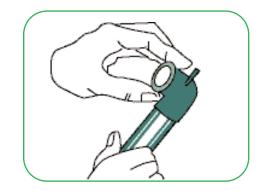

3. Cut the IPS Fusion pipe, with a pipe cutting scissor or saw; try to make the cut perpendicular to the pipe's axis. Be careful not to leave shavings on the pipe.

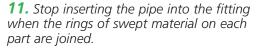
4. Clean and dry the pipe and the fitting thoroughly before proceeding with the fusion.

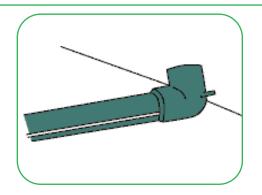
5. Mark on the pipe the length up to which it will be introduced in the socket. See table in item 5.2, Fusion.



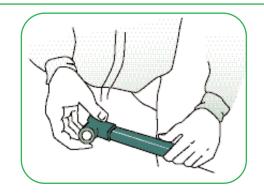

6. When using MAXUM pipes mark and cut with a cutter the coatings before proceeding with the fusion.




10. Once the required time has elapsed, remove both parts and join them slowly and steadily having previously thought about the direction the fitting should have. The white lines on the IPS Fusion pipes and the green marks on the fitting can be of help as a guide for this task.


7. Insert the pipe and the fitting simultaneously in the fusion device's welding sockets, when it has reached a temperature of 260° C., (red light off).

8. Press (without twisting) the pipe and the fitting into the respective welding sockets until they reach the limit. Do not exceed the markings.


9. Once you have reached the limit, leave in and wait the minimum time required indicated in the table in item 5.2, Fusion.

12. After stopping the pressure, there still is the possibility to make small adjustments in the fitting for about 3 seconds.

13. Let each fusion settle until it is completely cold.

14. Wait at least 3 hours from the last fusion before applying pressure to the installation.

IPS FUSION Technology

5.2 Fusion

Pipe insertion in the welding sockets and minimum heating time requirement table

Ø	Penetration	Warm up Time		
20mm	1.2cm	5 seconds		
25mm	1.3cm	7 seconds		
32mm	1.45cm	8 seconds		
40mm	1.6cm	12 seconds		
50mm	1.8cm	18 seconds		
63mm	2.4cm	24 seconds		
75mm	2.6cm	30 seconds		
90mm 2.9cm		40 seconds		

5.3 Late Fusion

This option can be used when working in difficult to reach areas or when it is impossible to join the pipe, the fitting and the welding socket at the same time. To do so, first place the fitting in the corresponding welding socket, keeping it double the amount of time indicated in 5.2, then continue with the pipe and leave it the established time. Finally, join as usual.

5.4 Concealed piping

To mount a concealed IPS Fusion installation, the thickness of the wall where the fitting will be placed must be taken into consideration. If the wall is wide enough, the fitting or inflexibility can be done with minimum coating, such as the diameter of the pipe, without the need for a strong mixture. If the wall is thin, the increase in the height of the gutter must be taken into account in order to adequately separate the hot and cold water pipes. This gap must be equal to the diameter of the pipes and the coating must be strong enough to fit both pipes.

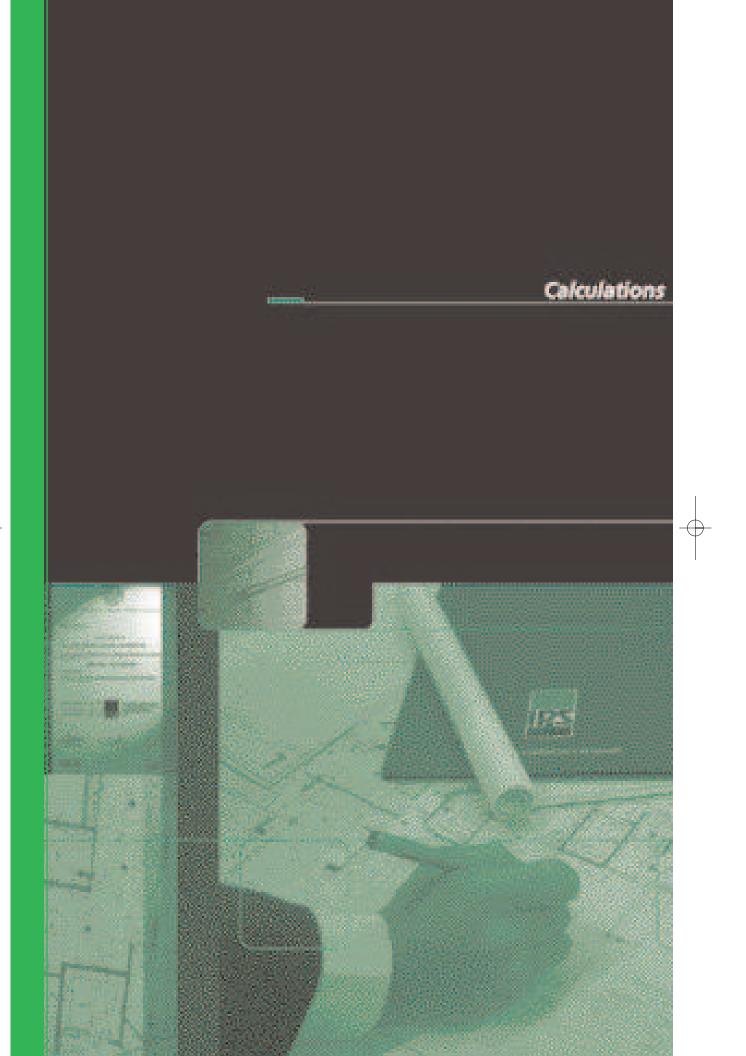

5.5 Exposed piping

Table of recommeded distances between clamps in exposed horizontal stretchs (expressed in cm, flexion less than 2/00) for different working temperatures (temperature in $^{\circ}$ C).

Ø/t°	0 °	20 °	40 °	60°	80 °	100°
20mm	66	61	57	54	49	43
25mm	74	69	63	60	55	49
32mm	87	81	75	71	63	57
40mm	97	90	84	80	71	64
50mm	105	97	90	86	78	69
63mm	119	111	103	98	88	79
75mm	135	125	116	111	100	90
90mm	150	140	130	125	115	100

To place an exposed installation it is necessary to stiffen the derivation knots, placing a fixed clamp under the Ts derivation. In vertical runs it is suggested that the distance between fixed points does not exceed three meters. Place a mobile point in between two fixed points. Remember that fixed clamps must hold the piping without damaging it. (Use IPS omega clamps, designed for that purpose).

Œ

6. Calculations

6.1 Piping dilation

Lineal dilation formula for hot water pipes

$\Delta I = a \Delta t x L$

- ΔI Longitudinal variation between two fixed points (mm)
- *a* Lineal dilation coefficient IPS: 0.11mm/m°C
- Δ **t** Temperature difference between: Room temperature on piping installation day and normal working temperature (°C)
- *L* Length of the piping between twofixed points (m)

Lineal dilation table for IPS Fusion System pipes

Δt	10℃	20°C	30°C	40°C	50°C	60°C	70°C	80°C	90°C	100°C
L										
0.1m	0.1	0.2	0.3	0.4	0.6	0.7	0.8	0.9	1.0	1.1
0.2m	0.2	0.4	0.7	0.9	1.1	1.3	1.5	1.8	2.0	2.2
0.3m	0.3	0.7	1.0	1.3	1.7	2.0	2.3	2.6	3.0	3.3
0.4m	0.4	0.9	1.3	1.8	2.2	2.6	3.1	3.5	4.0	4.4
0.5m	0.6	1.1	1.7	2.2	2.8	3.3	3.9	4.4	5.0	5.5
0.6m	0.7	1.3	2.0	2.6	3.3	4.0	4.6	5.3	5.9	6.6
0.7m	0.8	1.5	2.3	3.1	4.2	4.6	5.4	6.2	6.9	7.7
0.8m	0.9	1.8	2.6	3.5	4.4	5.3	6.2	7.0	7.9	8.8
0.9m	1.0	2.0	3.0	4.0	5.0	5.9	6.9	7.9	8.9	9.9
1m	1.1	2.2	3.3	4.4	5.5	6.6	7.7	8.8	9.9	11.0
2m	2.2	4.4	6.6	8.8	11.0	13.2	15.4	17.6	19.8	22.2
3m	3.3	6.6	9.9	13.2	16.5	19.8	23.1	26.4	29.7	33.0
4m	4.4	8.8	13.2	17.6	22.0	26.4	30.8	35.2	39.6	44.0
5m	5.5	11.0	16.5	22.0	27.5	33.0	38.5	44.0	49.5	55.0
6m	6.6	15.5	19.8	26.4	33.0	39.6	46.2	52.8	59.4	66.0

6.2 Advisable speeds depending on pressure

Table A

m.c.a.	Pressure kg/cm2	Speed m/s
01 to 05	up to 0.5	0.50 to 0.60
05 to 10	0.5 to 1	0.60 to 1.00
10 to 20	1 to 2	1.00 to 1.50
20 or more	2 or more	1.50 to 2.00

6.3 Load loss and diameter verification for IPS Fusion System pipes

• The load loss indicates the loss of pressure of a piping installation design due to friction, direction and section changes.

Factors that increase load loss:

- Very reduced internal layout.
- Large extension installation layout design.
- Pipes with rough internal walls, encrustings or scale.
- Sudden direction changes.
- Sudden diametre reductions.

Total load loss calculations in an installation.

The following formulas and tables apply to all IPS polypropylene pipes, regardless of the union system used, wether they are coated or not.

To calculate a piping's total load loss the following must be added:

1. Amount of meters of intalled piping, differentianting the various diameters (Example: 20m of 20mm, 12m of 25mm and 5m of 40mm).

2. Add to each piping size stretch the equivalent in meters of the installation localized resistances of each similar size, as direction changes and reductions (calculated according to table B and C).

- 3. Establish load loss per diameter according to the table D nomogramme.
- 4. Add the obtained values = Total load loss

Table B

Diameter reductions

a / de	25mm	32mm	40mm	50mm	63mm	75mm	90 mm
20mm	0.10m	0.18m	0.21m	0.24m	0.31m	0.32m	0.86m
25mm	HELLEN	0.12m	0.20m	0.25m	0.30m	0.32m	0.81m
32mm	A Standard	and the state	0.17m	0.23m	0.26m	0.28m	0.72m
40mm	254	125	200	0.22m	0.24m	0.25m	0.63m
50mm	Sugard	T	1 age	- Andrews	0.19m	0.20m	0.54m
63mm	- Marine	1-1-1	6-1-		ST my	0.18m	0.45m
75mm							0.36m

Table C

Direction changes

The values resulting from tables are aproximate and thay are expressed in equivalent longitudinal meters in one pipe.

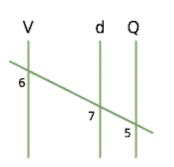
	20mm	25mm	32mm	40mm	50mm	63mm	75mm	90mm
90°elbow	0.4m	0.5m	0.6m	0.8m	1.0m	1.2m	1.4m	1.7m
45°elbow	0.2m	0.2m	0.3m	0.4m	0.5m	0.7m	0.9m	1.0m
90°curve	0.2m	0.3m	0.3m	0.4m	0.4m	0.5m	0.6m	0.7m
90° T direct link	0.2m	0.3m	0.3m	0.4m	0.5m	0.7m	0.9m	1.1m
90° T lateral exit	0.5m	0.6m	0.7m	0.9m	1.2m	1.5m	1.7m	2.0m
90° T bilateral exit	0.4m	0.5m	0.7m	0.8m	1.0m	1.3m	1.6m	1.9m

Table D

Nomogram guide to use the load loss nomogram and diameter verification

load loss calculations for localized resistance

- J Load loss mm.c.a. per meter of piping lenght.
- **Q** Desired flow (I/s).
- L Piping lenght (m).
- **d** Pipe's inner diameter (mm).
- V Speed (m/s).

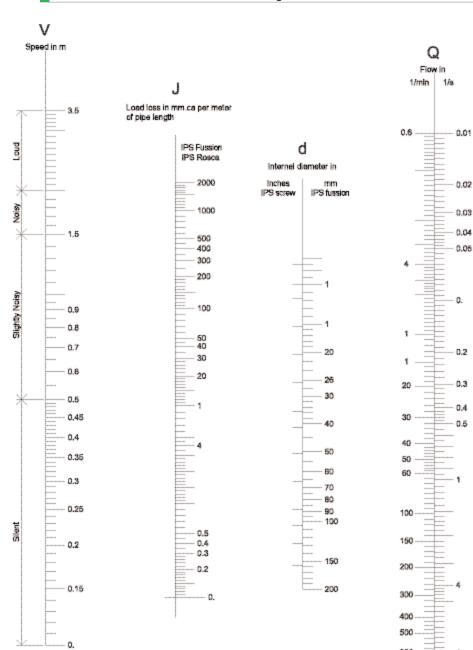

a) Load loss

- 1. Place in the fist Q scale the estimated flow. Point 1.
- 2. Determine the pipe's inner diameter. Point 2.
- 3. Join both points with a ruler. This line intersects J and V.
- **4.** Establish the load loss in mm.c.a. per ml. of piping in J. Point 3.
- 5. Verify the speed, Point 4, according to Table A.

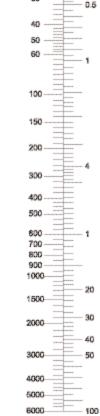
b) Diameter verification

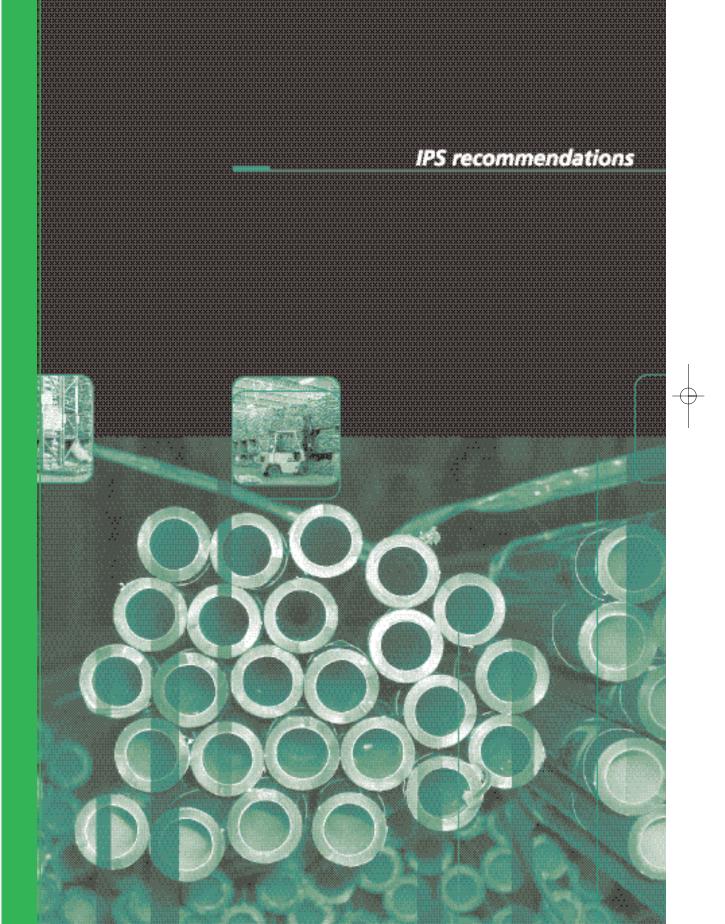
- 1. Do not consider line J.
- 2. With flow Q, establish Point 5.
- 3. Consider the desired speed, according to Table A.
- 4. Join 5 and 6 with a straight line.
- 5. Determine point 7, check the diameter.

V J d Q 4 3 2 1


ADVICE: In the event of minimal flows, the section will have to be increased by 1 diameter in the following cases:

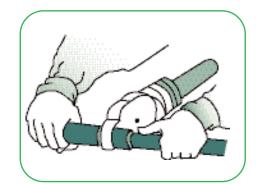
- In horizontal stretches, every 24 meters of installation.

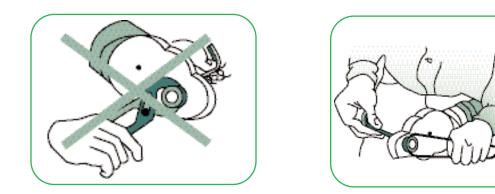

- In columns, in stretches from 20 to 25 meters.

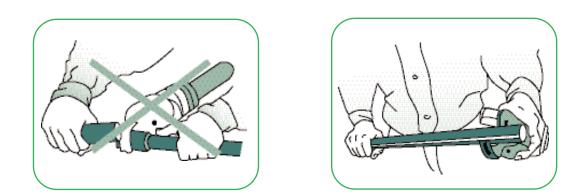


Load loss and diameter verification nomogram

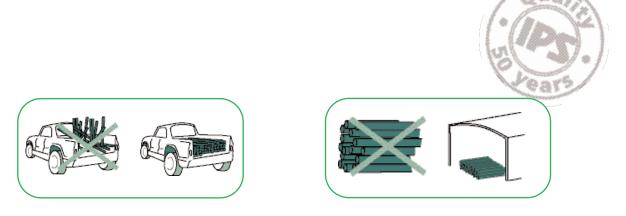
30

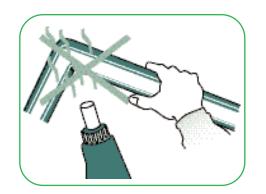


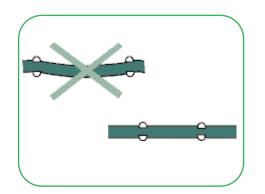

7. IPS recommendations

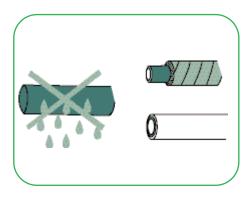

1. For a correct fusion, both pipe and the fitting must be totally clean and dry.

2. Make sure the welding sockets operating temperature is 260 °C.

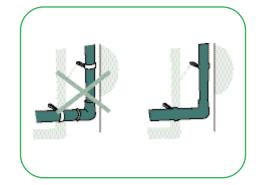

3. To change the hot welding sockets use welding sockets remover and an Allen wrench (these tools do not harm welding sockets' teflon).


4. In the event of choosing the wrong pieces we suggest to continue with the fusion, since afterwards the pieces can be cut and used again at another time.




5. Transport IPS pipes in an orderly manner. Store pipes in piles no higher than 1.5 meters and protected from ultraviolet rays.

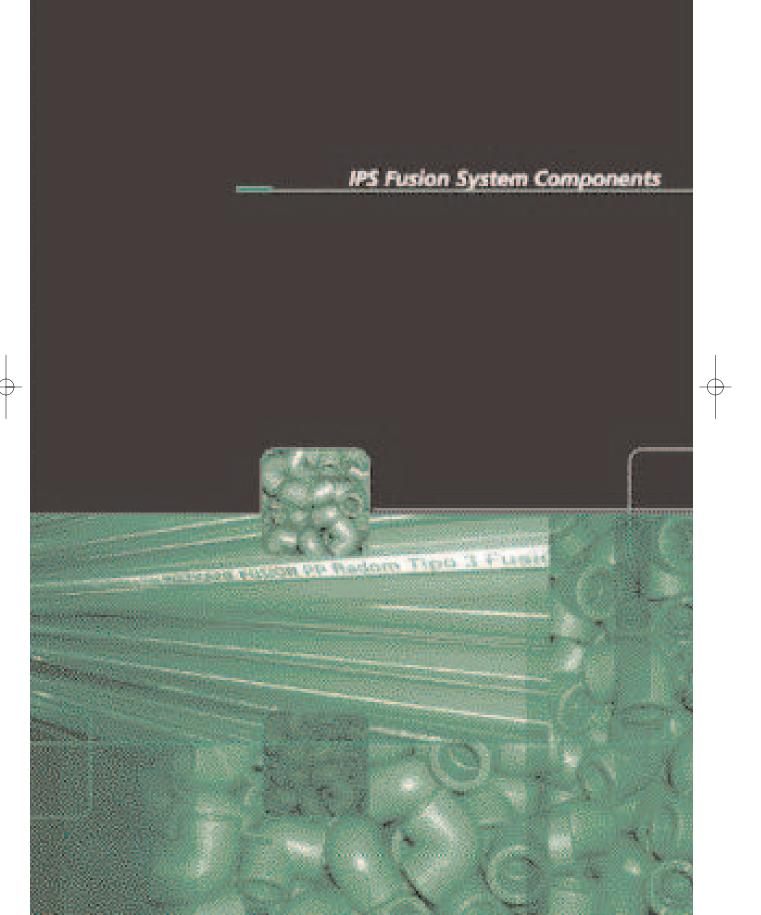
6. Do not use hot air blowlamps or direct flame to curve the pipes or fittings since it degrades the material.



7. In external installations use IPS CLAMPS, to avoid flexions greater than $2^{0}/00$.

8. Use the MAXUM pipe (with insulation) or the IPSOBAND strip to cover pipes and fittings in external installations, in cases of extremely cold conditions, or to prevent condensation and for UV ray protection.

9. To remove the foam covering from the MAXUM pipe use a cutter.



10. For installations exposed to the sun, we recommend using IPSOLAR or MAXUM pipes with fittings protected with IPSOLAR or IPSOBAND.

11. In low temperature areas use MAXUM with IPSOBAND covered fitting.

12. For installations in cold places it is convenient to close the main tap and open the faucets to empty the piping. This prevents water freezing due to extended exposure to low temperatures. MAXUM pipes delay freezing for 16 hours.

8. IPS Fusion System Components

IPS Fusion System Piping

and and the	Maxum S32 Super Insulation (IPS Fusion S3.2 + thermal insulation) Use: hot water and radiators*	9 Rem N' Wall Unickness an per strip Norms	2921	25mm 2922 3.5mm 4 *	32mm 2923 4.5mm 4 *	2924	2925	2926	2927	2928	2929 15.2mm 4 *
The state	Reinforced Multilayer Fusi IRAM seal for 20, 25 and 32 mm diam. Use: hot water	ON Item N ² Wall thickness m per strip Norms	2601	25mm 2602 4.2mm 4 *	32mm 2603 5.4mm 4 *	2604	50mm 2605 8.4mm 4 *	2606	2607	2608	2609
and the second second	Multilayer IPS Fusion S32 Use: hot water	item N" Wall thickness In per strip Norms	20mm 2901 2.8mm 4 *	25mm 2902 3.5mm 4 *	32mm 2903 4.5mm 4	2904	2905	2906	2907	2908	110mm 2909 15.2mm 4 *
	IPS Fusion Pipe Use: cold water	Rom N [*] Wall thickness	3	2mm 2503	2504	50mm 2505	250		507 2	2508	2509
		m per strip Norms		3mm 4 *	3.7mm 4 *	4.6mm 4 *	58m 4 *	0.000	imm 8 4 A	2mm 4 *	10.0mm 4 *
IPS Fu	ECE.	m per strip Norms (S N' s per Big bag s per bag	20mm 1211 60 10	4	4 * 32mm	4	4	0.000	4.00	-	and the second se
IPS Fu	Corner Elbow item HHH Unit FCE Unit Non 90 Elbow HH item FCU Unit	m per strip Norms (S (S (S) (S) (S) (S) (S) (S) (S) (S) (1211 60 10 @	4 * 25mm 1212 60 10 *	4 * 32mm 1213 30 5	4 * 10mm 5	4 * 0mm 6		4 k	4	4

has	0	90 Elbow		20mm	25mm	32mm					with a	
1200	CAR .	MH	them N'	121	122	123						
-		FCUMH	U. per 8ig bag		375	150						
	0	and a second second second	U. per bag	25	25	10						
			Norms									
		/	5-911 ···									
		45 Elbow		20mm	25mm	32mm	40mn	1 50mm	63mm	75mm		
		HH	item N	131	132	133	134	135	136	137		
		FCA	U. per Big bag		90	60	30	18	12	6		
		1999	U. per bag	15	15	10	1	1	1	1		
	*		Norms			8	8			8		
	_			20	25mm	22	10	50	12-			
1000	1 8	90 Curve	Macrosoft.									
0100	ALC: N	HH	item N	281	282	283	2848		286			
STA.		FBU	J. per 8 g bag		90	60	30	12	12			
3			U. per bag	15	15	10	1	1	1			
2			Norms		0							
		1									_	
	-	Overpass		and the second second	25mm	Constant of the						
Contrast.	ALC: NOT THE REAL PROPERTY OF	MM	tem N'	291	292	293						
-		FSOB	U. per Big bag		90	60						
/		1000	U. per bag	15	15	10						
			Norms		8							
	-						14					
and the second	1.4	90 T		20mm			1 St. 1	and the second			90mm	HOmm
		ннн	ttern N*	161	162	163	164	165	166	167	168	168
		FTU	U. per Big beg	375	375	150	30	18	12	6	6	6
	and the second s		U. per bag	25	25	10	1	1	1	1	1	1
«	>		Norma				0			8		0
	-	\ \		1010/074			95 g - 2		WEAT-	55.52		9523 C 0
Anterio		90 T		25x20	32x2	0 32x	25 4	0x20	40x25	40x32	50x20	50x2:
and the second		ннн	tem N*	241	242	24	1	244	245	246	247	248
	11/12	FTU RED	U. per Big beg	225	90	60	1	30	30	30	30	18
	and the second s	000022000	U. per bag	15	15	10	12	1	1	1	1	1
0			Norms									
						76.00	-		00.75	10.7		
249	250	63x20 63x25 251 252		3x40 c 254	257	258	/ SX				263	264
18	18	12 12	12	12	12	6	6			6	6	6
1	1	1 1	1	1	1	1	1			1	1	1

 \oplus

IPS FUSION Technology

1	OV HH	erpass	Item		20mm	25mm 3		Omm : 194				mm 110m 98 199
1000	FC			n F Big bag	375	375	150	30	12	12		6 6
			U. pe	r bag	25	25	10	1	1	1		1 1
)		Norm		•							
)	pla net	2		25.2	0 32x2	0 32x	25 1	0x20 4	0x25	40×32	50x20
1000	MH		tem	N ^r	140	14			143	144	145	146
200	FCM	IH		r Big bag	150	150			30	30	30	18
11				rbag	25	25			0	1	1	1
-			Norm						e			
50x25	50x32	50x40	63x20	63x25	63×32 63	3x40 6	3x50	75x5) 75×6	3 90x	63 90x	75
148	1.49	150	151	152		54	155	156	157	150		
18	18	18	12	12	12	12	12	6	6	6		
1		1	8	0	1	8	-	1				
÷			-	Č						1 5		
-	Lid				20mm	25mm	32mm	40mm	n 50mm	63mm	75mm	
1	н		Item	N	111	112	113	114	115	116	117	
	FTH			r Big bag	150	150	60	30	12	12	12	
1	1.000		U. pe		25	25	10	1	1	1	1	
V			Norm	s	8		8					
-) (7				20	25mm	20					
	HH		berth	N	751	752	753					
	FCZ			r Big bag	120	90	60					
			the second second	rbag	20	15	10					
\sim			Norm	s _			9					
					20mm	25	32.00	d Dana	50mm	43-00	75.00	
)	adala				A	SAMI		235	236	237	
		uble	The second	N.			233	224				
1	Un HH	ion	Nem U. pe		231	232 72	233	234	12	12	6	
	Un	ion	U. pe	N' r Big bag r bag	231	232						
	Un HH	ion	U. pe	r Big bag r bag	231 90	232 72	48	30	12	12	6	
		ion	U. pe U. pe	r Big bag r bag	231 90 15 •	232 72 12 •	48 8 0	30 1 •	12 1 •	12 1 •	6 1 •	78.0- 0-
		uble	U, pe U, pe Norm	r 0 g bag r bag u	231 90 15 • 20x1/3	232 72 12 •	48 8 60 /4" 32a	30 1 9	12 1 •	12 1 •	6 1 • 63x2"	75:21/2*
		uble	U, pe U, pe Norm	r 0-g bag r bag u v	231 90 15 • 20x1/2 531	232 72 12 •	48 8 69 /4" 325 2 53	30 1 9 (1' 40	12 1 •	12 1 • 535	6 1 • •	537
		uble	U, pe U, pe Norm U, pe	r 0 g bag r bag u	231 90 15 • 20x1/3	232 72 12 •	48 8 60 /4" 325 2 53 2 4	30 1 9 (1' 40	12 1 •	12 1 •	6 1 • 63x2"	State State St

9	Double Union MH FUDrM	hem N' U, per Big bag U, per bag Norms	9	1/2" 21 50 55 H 0	25x3/4 922 120 20 ⊕●		32x1* 923 60 10		
-	90 Elbow iH			1/2"					
- man	support HH	Item N		01					
10	FCUIHS	U. per Rig bag U. per bag		0					
	with metal insert	Norms							
	90 Elbow iH	L	20x3/8*	20x1/2*1	25x3/8* 1	25x1/2*	25x3/4	* 32x3/4	* 32x1*
	HH	ttem N	200	201	205	202	203	209	204
1 1.4	FCUIH5	L. per Big bag	120	120	120	120	120	60	60
	with metal	U. per bag	20	20	20	20	20	10	10
	insert	Norms	•	8		1		,	•
	90 Elbow iM	6 5	20x1/2*	25x1/	2*	25x3/4*		2x3/4*	32x1
	MH	item N*	1121	1122		1123	1	1129	229
Contraction of the second	FCUIM	U. per Big bag	120	120		60	_	60	60
	with metal	U. per bag	20	20		10		10	10
-	insert	Norms		8				,	,
	Constanting of		constant of						1122-03
and the second s	90 T iH		20x3/8"	20x1/		25×1/2*		25x3/4"	32×1
	HH	item N*	210	211		212		213	214
10000	FTUIH	U. per Big bag	60	60		60		60	60
	with metal insert	U. per bag	10	10		10		10	10
	and a second	Norms						N M M	
-	90 T IM			1/2*	25x3/4	(a	32x3/4"	3	2x1*
the second second	HMH	Item N*		61	763		769		/64
	FTUIM with metal	U. per Big bag		0	60		60		60
T	insert	U. per bag Norms		0	10		10		10 •
	Cupla iH		20x3/8"	20x1/2*	20x3/4	' 25x	1/2"	25x3/4*	32x1/2*
	HH	ttem N'	270	271	290		78	272	284
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FCIH	U, per Big bag	120	120	60		12	60	60
Contraction of the second seco	with metal	U. per bag	20	20	10		12	10	10
	insert	Norms						1	

 \oplus

59

 \oplus

IPS FUSION Technology

AN HH		item N	10 a 10 a 10	273	274	/4* 50 x11/2 275	63x2° 7	277	280	
PCI		U. per Big bag	60	60	6	ó	6	6	ó	
	th metal ert	U. per beg	10	10	1	1	1	1	1	
	ert	Noms	•	,						
	upla iM		20x1/2	* 2	5x1/2*	25x3/4*	32x1/2*	32	x3/4"	32x1
MI MI		Item N'	221		220	222	119		228	223
FC	M	U. per Big beg	120		60	60	60		60	60
	th metal ert	U. per bag	20	_	10	10	10		10	10
	ert	Norms					8		,	
			6	40x11	14-	50x11/2*	63x2*	75x21	1/2=	90x3*
		Item N		224		225	226	22		230
		U, per Big bag		6		6	6	đ		6
		U. per bag		1		1	1	1		1
		Norms		•		•	•	,		•
	daptator			20 m	m	25 mm				
	R FATA	Item N								
TA	NK	U. per Big bag								
		U. per beg								
		U. per beg Norms								
🐒 🔰 IP:	ves ater valve S – FV/20 PFV	Norms	20n 19/ 11 3	41 8 3	25mm 1942 18 3 ●					
	ater valve 5 – FV/20	Norms Item N° U, per Big bag U, per bag Norms	19, 11 3 6	41 8 3	1942 18 3	32mm				
	ater valve S – FV/20 PFV ater valve	Norms Item N° U. per Big bag U. per bag Norms	19. 14 3 • • • • • • • • • • • • • • • • • •	41 8 9 mm 2 71	1942 18 3 • 25mm 172	173				
W IP: FIL	ater valve S – FV/20 PFV ater valve	Norms Item N° U. per Big bag U. per bag Norms Item N° U. per Big bag	19/ 11/ 3 20/ 12 12	41 8 3 9 71 20	1942 18 3 • 25mm 172 120	173 75				
	ater valve S – FV/20 PFV ater valve	Norms Item N° U, per Big bag U, per bag Norms Item N° U, per Big bag U, per Big bag U, per bag	19. 11 3 	41 8 3 • 71 20 8	1942 18 3 • 25mm 172 120 8	173 75 5				
	ater valve S – FV/20 PFV ater valve	Norms Item N° U. per Big bag U. per bag Norms Item N° U. per Big bag	19. 11 3 	41 8 3 9 71 20	1942 18 3 • 25mm 172 120	173 75				
FIL FIL	ater valve S – FV/20 PFV ater valve P	Norms Item N' U. per Big bag U. per bag Norms Item N' U. per Big bag U. per Big bag U. per bag Norms	19. 11 3 3 4 201 12 12 12 8 4	41 8 3 • • 71 20 8 •	1942 18 3 • 25mm 172 120 8 •	173 75 5 •				
	ater valve S – FV/20 PFV ater valve	Norms Item N' U, per Big bag U, per bag Norms Item N' U, per Big bag U, per Big bag U, per bag Norms	19/ 11/ 3 20/ 12 12 8 4	41 8 3 • 71 20 8	1942 18 3 • 25mm 172 120 8 •	173 75 5				
	ater valve S – FV/20 PFV ater valve P	Norms Item N' U. per Big bag U. per bag Norms Item N' U. per Big bag U. per Big bag U. per bag Norms	19/ 11/ 3 20/ 12 12 8 4	41 8 3 7 7 20 8 0 0 mm 181 30	1942 18 3 • 25mm 172 120 8 •	173 75 5 • 25mm 182 30				
FIL FIL WM FIL WM BEL	ater valve S – FV/20 PFV ater valve P	Norms Item N' U, per Big bag U, per bag Norms Item N' U, per Big bag U, per bag Norms	19/ 11/ 3 20/ 17 12 8 4 20/ 17 12 20/ 12 20/ 12 12 12 12 12 12 12 12 12 12 12 12 12	41 8 7 7 20 3 9 0 mm 181	1942 18 3 • 25mm 172 120 8 •	173 75 5 • 25mm 182				

	Water valve METALLIC HEAD FCMLLP	Item N' U, per Big bag U, per bag Norms	20mm 1801 1 8		25mm 1802 1 1 8			
	Spherical valve METAL WHEEL FVEV	Kem N' U. per Big bag U. per bag Norms	20mm 1931 18 3 @	25mm 1932 18 3 @	32mm 1933 18 3 ©			
6	Spherical valve HANDLE FVEM	item N° U. per Big bag U. per bag Norms	20mm 1911 18 3	25mm 1912 18 3	32mm 1913 18 3	40mm 1914 4 1	50mm 1915 4 1	63mm 1916 4 1
Refere	nces	Norms	•		•	•		•

★ IRAM 13470 y 13471 DIN 8076 y 8078

 \oplus

- IRAM 13472-1 y 13472-2 DIN 16962
- IRAM 13472-1 y 13472-2
 DIN 16962
 IRAM 5063
 DIN 2999
 BSPT
 ISO 7/1 Rc
- IRAM 13472-1 y 13472
 DIN 16962
 IRAM 13478-1 y 13472-2
 IRAM 5063
 DIN 2999
 BSPT
 ISO 7/1 Rc

- DVS 2208
- ★ IPS QUALITY STANDARDS
- 📥 IRAM 13330 y 13346
- IRAM 13478-1 y 13478-2 DIN 16962 IRAM 5063 DIN 2999 BSPT ISO 7/7 Rc
- IRAM SEAL IRAM 13478-1 y 13478-2 DIN 16962 IRAM 5063 DIN 2999 BSPT ISO 7/1 Rc
- IRAM 13473 y 13479
 DIN 8077 y 8078
 IRAM 5063
 DIN 2999
 BSPT
 ISO 7/1 Rc
- **V** ASTM D-2609
- ASTM D-2609 IRAM 5063 DIN 2999 BSPT ISO 7/1 Rc
- IRAM SEAL IRAM 13470 y 13471 DIN 8077 y 8078

